Math Problem Statement

Löse die aufgabe

Bestimmen Sie die Potenz z^5 für die komplexe Zahl z = -1/2 - sqrt(3)i/2.

Solution

To solve the problem, let’s go through each part step by step.

Problem Breakdown:

The complex number zz is given by: z=1232iz = -\frac{1}{2} - \frac{\sqrt{3}}{2} i

We need to determine the power z5z^5 using polar coordinates.

Step 1: Convert zz to Polar Form

To express zz in polar form, we need its modulus rr and argument φ\varphi.

Modulus rr:

r=(12)2+(32)2=14+34=1=1r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1

Thus, r=1r = 1.

Argument φ\varphi:

Since z=1232iz = -\frac{1}{2} - \frac{\sqrt{3}}{2} i, it is in the third quadrant of the complex plane.

To find the angle, we calculate the reference angle: φ=tan1(3/21/2)=tan1(3)=π3\varphi = \tan^{-1} \left( \frac{\sqrt{3}/2}{1/2} \right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}

However, since zz is in the third quadrant, the angle φ\varphi is: φ=π+π3=4π3\varphi = \pi + \frac{\pi}{3} = \frac{4\pi}{3}

So, the polar form of zz is: z=1(cos4π3+isin4π3)z = 1 \cdot \left( \cos\frac{4\pi}{3} + i \sin\frac{4\pi}{3} \right)

Step 2: Calculate z5z^5 Using De Moivre’s Theorem

De Moivre’s Theorem states: zn=rn(cos(nφ)+isin(nφ))z^n = r^n \left( \cos(n\varphi) + i \sin(n\varphi) \right)

For z5z^5:

  1. r5=15=1r^5 = 1^5 = 1
  2. 5φ=54π3=20π35 \cdot \varphi = 5 \cdot \frac{4\pi}{3} = \frac{20\pi}{3}

To reduce 20π3\frac{20\pi}{3} to the interval [0,2π)[0, 2\pi): 20π3=2π+14π3=4π+2π3=2π3\frac{20\pi}{3} = 2\pi + \frac{14\pi}{3} = 4\pi + \frac{2\pi}{3} = \frac{2\pi}{3}

So, z5=1(cos2π3+isin2π3)z^5 = 1 \cdot \left( \cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3} \right)

Step 3: Evaluate cos2π3\cos\frac{2\pi}{3} and sin2π3\sin\frac{2\pi}{3}

cos2π3=12,sin2π3=32\cos\frac{2\pi}{3} = -\frac{1}{2}, \quad \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}

Thus, z5=12+32iz^5 = -\frac{1}{2} + \frac{\sqrt{3}}{2} i

Final Answer:

z5=12+32iz^5 = -\frac{1}{2} + \frac{\sqrt{3}}{2} i

Let me know if you need further details or have questions.

Here are some related questions for deeper understanding:

  1. How would you find znz^n for other values of nn?
  2. What is De Moivre's Theorem and how is it used in complex numbers?
  3. How do polar and rectangular forms of complex numbers relate?
  4. How can you determine which quadrant an angle falls in using trigonometric values?
  5. What are other applications of complex number powers in physics and engineering?

Tip: When working with complex numbers in polar form, always ensure the argument angle is within the correct interval, typically [0,2π)[0, 2\pi) or [π,π)[-\pi, \pi), for consistency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Coordinates
Powers of Complex Numbers

Formulas

Polar form: z = r * (cos(φ) + i * sin(φ))
De Moivre's Theorem: z^n = r^n * (cos(nφ) + i * sin(nφ))
Argument calculation using arctan

Theorems

De Moivre's Theorem

Suitable Grade Level

Undergraduate Math / Advanced High School