Math Problem Statement

The given quantities below were calculated from a sample data set.

∑x=280      ∑y=291      ∑xy=2845 ∑x^2=3906 ∑y^2=3931 n=29

Determine the least squares regression line. Round values to four decimal places, if necessary.

y^=

Determine the correlation coefficient. Round the solution to four decimal places, if necessary.

r=

Solution

To find the least squares regression line y=y^=a+bxy = \hat{y} = a + bx and the correlation coefficient rr, let's go through the calculations step-by-step.

Given Data

  • x=280\sum x = 280
  • y=291\sum y = 291
  • xy=2845\sum xy = 2845
  • x2=3906\sum x^2 = 3906
  • y2=3931\sum y^2 = 3931
  • n=29n = 29

Step 1: Calculate bb (Slope) and aa (Intercept) for the Regression Line

The formulas for the slope bb and intercept aa of the least squares regression line are:

b=nxyxynx2(x)2b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}

a=ybxna = \frac{\sum y - b \sum x}{n}

1. Calculate bb:

b=2928452802912939062802b = \frac{29 \cdot 2845 - 280 \cdot 291}{29 \cdot 3906 - 280^2}

Let's calculate each part:

  • Numerator: 292845=8240529 \cdot 2845 = 82405 and 280291=81480280 \cdot 291 = 81480, so 8240581480=92582405 - 81480 = 925

  • Denominator: 293906=11327429 \cdot 3906 = 113274 and 2802=78400280^2 = 78400, so 11327478400=34874113274 - 78400 = 34874

Then, b=925348740.0265b = \frac{925}{34874} \approx 0.0265

2. Calculate aa:

a=291(0.0265280)29a = \frac{291 - (0.0265 \cdot 280)}{29}

  • 0.02652807.420.0265 \cdot 280 \approx 7.42, so 2917.42=283.58291 - 7.42 = 283.58

Then, a=283.58299.7786a = \frac{283.58}{29} \approx 9.7786

Therefore, the least squares regression line is:

y^=9.7786+0.0265x\hat{y} = 9.7786 + 0.0265x


Step 2: Calculate the Correlation Coefficient rr

The formula for the correlation coefficient rr is:

r=nxyxy(nx2(x)2)(ny2(y)2)r = \frac{n \sum xy - \sum x \sum y}{\sqrt{\left( n \sum x^2 - (\sum x)^2 \right) \left( n \sum y^2 - (\sum y)^2 \right)}}

1. Calculate the Numerator (which we already found above):

nxyxy=925n \sum xy - \sum x \sum y = 925

2. Calculate the Denominator:

  • For xx: nx2(x)2=34874n \sum x^2 - (\sum x)^2 = 34874

  • For yy: ny2(y)2=2939312912n \sum y^2 - (\sum y)^2 = 29 \cdot 3931 - 291^2

Calculating each part:

  • 293931=11399929 \cdot 3931 = 113999
  • 2912=84681291^2 = 84681, so 11399984681=29318113999 - 84681 = 29318

Now we can compute rr:

r=9253487429318r = \frac{925}{\sqrt{34874 \cdot 29318}}

Calculating the denominator:

3487429318102216741231971.9\sqrt{34874 \cdot 29318} \approx \sqrt{1022167412} \approx 31971.9

So, r=92531971.90.0289r = \frac{925}{31971.9} \approx 0.0289


Final Answers

  • Least Squares Regression Line: y^=9.7786+0.0265x\hat{y} = 9.7786 + 0.0265x
  • Correlation Coefficient: r0.0289r \approx 0.0289

Would you like further details on these calculations?


Related Questions

  1. What are the key assumptions behind using the least squares regression line?
  2. How does the correlation coefficient help interpret the strength of a linear relationship?
  3. Can a weak correlation still result in a significant regression line? Why or why not?
  4. How would the regression line change if the values of xx and yy were reversed?
  5. What are some limitations of using the least squares regression method?

Tip: When interpreting rr, keep in mind that values close to 0 indicate a weak linear relationship, while values closer to ±1\pm1 indicate stronger linear relationships.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Regression Analysis
Correlation

Formulas

Least squares regression line formula: y = a + bx
Correlation coefficient formula: r = (n∑xy - ∑x∑y) / √((n∑x² - (∑x)²)(n∑y² - (∑y)²))

Theorems

Least Squares Method
Pearson Correlation Coefficient

Suitable Grade Level

Grades 11-12