Math Problem Statement

L[t^2 cos3t]

Solution

To find the Laplace transform of t2cos(3t)t^2 \cos(3t), we can use the Laplace transform properties.

General Formula:

The Laplace transform of tnf(t)t^n f(t) is given by:

L{tnf(t)}=(1)ndndsn[L{f(t)}]\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} \left[ \mathcal{L}\{f(t)\} \right]

where L{f(t)}\mathcal{L}\{f(t)\} is the Laplace transform of the function f(t)f(t).

Step 1: Laplace Transform of cos(3t)\cos(3t)

L{cos(3t)}=ss2+9\mathcal{L}\{\cos(3t)\} = \frac{s}{s^2 + 9}

Step 2: Apply the formula for t2cos(3t)t^2 \cos(3t)

Now, since n=2n = 2 and f(t)=cos(3t)f(t) = \cos(3t):

L{t2cos(3t)}=(1)2d2ds2[ss2+9]\mathcal{L}\{t^2 \cos(3t)\} = (-1)^2 \frac{d^2}{ds^2} \left[\frac{s}{s^2 + 9}\right]

Step 3: Differentiate Twice

Let's differentiate ss2+9\frac{s}{s^2 + 9} twice with respect to ss:

  1. First derivative: dds[ss2+9]=(s2+9)1s2s(s2+9)2=9s2(s2+9)2\frac{d}{ds} \left[\frac{s}{s^2 + 9}\right] = \frac{(s^2 + 9) \cdot 1 - s \cdot 2s}{(s^2 + 9)^2} = \frac{9 - s^2}{(s^2 + 9)^2}

  2. Second derivative: [ \frac{d^2}{ds^2} \left[\frac{s}{s^2 + 9}\right] = \frac{d}{ds} \left[\frac{9 - s^2}{(s^2 + 9)^2}\right] ] Using the quotient rule again: dds[9s2(s2+9)2]=(s2+9)2(2s)(9s2)2(s2+9)2s(s2+9)4\frac{d}{ds} \left[\frac{9 - s^2}{(s^2 + 9)^2}\right] = \frac{(s^2 + 9)^2 \cdot (-2s) - (9 - s^2) \cdot 2(s^2 + 9) \cdot 2s}{(s^2 + 9)^4} Simplifying this yields: 2s(s2+9)22s(9s2)2(s2+9)(s2+9)4\frac{-2s(s^2 + 9)^2 - 2s(9 - s^2) \cdot 2(s^2 + 9)}{(s^2 + 9)^4} After further simplification: =2s(3s245)(s2+9)3= \frac{2s(3s^2 - 45)}{(s^2 + 9)^3}

Final Answer:

L{t2cos(3t)}=2s(3s245)(s2+9)3\mathcal{L}\{t^2 \cos(3t)\} = \frac{2s(3s^2 - 45)}{(s^2 + 9)^3}

Do you want to go over this in more detail or have any questions?


Here are 5 related questions:

  1. How would you find the Laplace transform of tsin(2t)t \sin(2t)?
  2. Can you compute L1{ss2+4}\mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 4} \right\}?
  3. What is the Laplace transform of t3e2tt^3 e^{2t}?
  4. How can you apply the convolution theorem using Laplace transforms?
  5. Can you determine the Laplace transform of a periodic function?

Tip: The Laplace transform is particularly useful in solving linear differential equations and analyzing systems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Differentiation
Trigonometric Functions

Formulas

Laplace transform of t^n f(t)

Theorems

-

Suitable Grade Level

Advanced Mathematics