Math Problem Statement

L[t^2 cos3t]

Solution

To find the Laplace transform of the function t2cos(3t)t^2 \cos(3t), we use the formula for the Laplace transform of tnf(t)t^n f(t):

[ \mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} \left{ \mathcal{L}[f(t)] \right} ]

Here, f(t)=cos(3t)f(t) = \cos(3t) and n=2n = 2. The Laplace transform of cos(3t)\cos(3t) is:

L[cos(3t)]=ss2+9\mathcal{L}[\cos(3t)] = \frac{s}{s^2 + 9}

Now, we need to differentiate this result twice with respect to ss.

Step-by-step Solution:

  1. First Derivative: dds(ss2+9)\frac{d}{ds} \left( \frac{s}{s^2 + 9} \right)

    Using the quotient rule, dds(uv)=uvuvv2\frac{d}{ds} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2}:

    • u=su = s, u=1u' = 1
    • v=s2+9v = s^2 + 9, v=2sv' = 2s

    Plugging these into the formula:

    dds(ss2+9)=(1)(s2+9)(s)(2s)(s2+9)2=s2+92s2(s2+9)2=s2+9(s2+9)2\frac{d}{ds} \left( \frac{s}{s^2 + 9} \right) = \frac{(1)(s^2 + 9) - (s)(2s)}{(s^2 + 9)^2} = \frac{s^2 + 9 - 2s^2}{(s^2 + 9)^2} = \frac{-s^2 + 9}{(s^2 + 9)^2}

  2. Second Derivative: d2ds2(ss2+9)=dds(s2+9(s2+9)2)\frac{d^2}{ds^2} \left( \frac{s}{s^2 + 9} \right) = \frac{d}{ds} \left( \frac{-s^2 + 9}{(s^2 + 9)^2} \right)

    Applying the quotient rule again:

    • u=s2+9u = -s^2 + 9, u=2su' = -2s
    • v=(s2+9)2v = (s^2 + 9)^2, v=2(s2+9)(2s)=4s(s2+9)v' = 2(s^2 + 9)(2s) = 4s(s^2 + 9)

    Plugging into the quotient rule:

    dds(s2+9(s2+9)2)=(2s)(s2+9)2(s2+9)(4s(s2+9))(s2+9)4\frac{d}{ds} \left( \frac{-s^2 + 9}{(s^2 + 9)^2} \right) = \frac{(-2s)(s^2 + 9)^2 - (-s^2 + 9)(4s(s^2 + 9))}{(s^2 + 9)^4}

    Simplifying this expression:

    =2s(s2+9)2+4s(s2+9)(s29)(s2+9)4= \frac{-2s(s^2 + 9)^2 + 4s(s^2 + 9)(s^2 - 9)}{(s^2 + 9)^4}

    Factor out 2s(s2+9)2s(s^2 + 9):

    =2s(s2+9)((s2+9)+2(s29))(s2+9)4= \frac{2s(s^2 + 9) \left( - (s^2 + 9) + 2(s^2 - 9) \right)}{(s^2 + 9)^4}

    Simplifying inside the parentheses:

    = \frac{2s(s^2 + 9) \left( s^2 - 27 \right)}{(s^2 + 9)^4}$$ Finally, divide by $$(s^2 + 9)^2$$: $$\frac{2s(s^2 - 27)}{(s^2 + 9)^3}$$
  3. Final Result:

The Laplace transform of t2cos(3t)t^2 \cos(3t) is:

L[t2cos(3t)]=2s(s227)(s2+9)3\mathcal{L}[t^2 \cos(3t)] = \frac{2s(s^2 - 27)}{(s^2 + 9)^3}

Would you like more details or have any questions?

Here are 5 related questions for further exploration:

  1. What is the Laplace transform of t3sin(2t)t^3 \sin(2t)?
  2. How does the Laplace transform change for tneatcos(bt)t^n e^{at} \cos(bt)?
  3. What is the Laplace transform of tsin(at)t \sin(at)?
  4. How can we apply the Laplace transform to solve higher-order differential equations?
  5. What is the inverse Laplace transform of s29(s2+9)3\frac{s^2 - 9}{(s^2 + 9)^3}?

Tip: For functions involving tnt^n multiplied by another function, the differentiation property of the Laplace transform can simplify finding the transform by reducing it to differentiating simpler transforms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace transform
Differentiation
Trigonometric functions

Formulas

Laplace transform of t^n f(t)
Quotient rule for differentiation

Theorems

-

Suitable Grade Level

Advanced Mathematics