Math Problem Statement

If cosh(x) = 41/40 and x > 0, find the values of the other hyperbolic functions at x.

Solution

To solve for the other hyperbolic functions when given that cosh(x)=4140\cosh(x) = \frac{41}{40} and x>0x > 0, let's proceed as follows:

1. Recall the Hyperbolic Identities

We know that: cosh2(x)sinh2(x)=1\cosh^2(x) - \sinh^2(x) = 1 Using this identity, we can solve for sinh(x)\sinh(x).

2. Solve for sinh(x)\sinh(x)

Given cosh(x)=4140\cosh(x) = \frac{41}{40}, plug this into the identity: (4140)2sinh2(x)=1\left(\frac{41}{40}\right)^2 - \sinh^2(x) = 1 16811600sinh2(x)=1\frac{1681}{1600} - \sinh^2(x) = 1 sinh2(x)=1681160016001600=811600\sinh^2(x) = \frac{1681}{1600} - \frac{1600}{1600} = \frac{81}{1600} sinh(x)=811600=940\sinh(x) = \sqrt{\frac{81}{1600}} = \frac{9}{40}

Thus, sinh(x)=0.225\sinh(x) = 0.225, which matches the value in the table.

3. Calculate tanh(x)\tanh(x)

The hyperbolic tangent function is defined as: tanh(x)=sinh(x)cosh(x)\tanh(x) = \frac{\sinh(x)}{\cosh(x)} Substituting the values: tanh(x)=9404140=9410.2195\tanh(x) = \frac{\frac{9}{40}}{\frac{41}{40}} = \frac{9}{41} \approx 0.2195

4. Calculate coth(x)\coth(x)

The hyperbolic cotangent function is defined as: coth(x)=cosh(x)sinh(x)\coth(x) = \frac{\cosh(x)}{\sinh(x)} Substitute the values: coth(x)=4140940=4194.5556\coth(x) = \frac{\frac{41}{40}}{\frac{9}{40}} = \frac{41}{9} \approx 4.5556

5. Calculate sech(x)\text{sech}(x)

The hyperbolic secant function is defined as: sech(x)=1cosh(x)\text{sech}(x) = \frac{1}{\cosh(x)} Using cosh(x)=4140\cosh(x) = \frac{41}{40}: sech(x)=14140=40410.9756\text{sech}(x) = \frac{1}{\frac{41}{40}} = \frac{40}{41} \approx 0.9756

6. Calculate csch(x)\text{csch}(x)

The hyperbolic cosecant function is defined as: csch(x)=1sinh(x)\text{csch}(x) = \frac{1}{\sinh(x)} Using sinh(x)=940\sinh(x) = \frac{9}{40}: csch(x)=1940=4094.4444\text{csch}(x) = \frac{1}{\frac{9}{40}} = \frac{40}{9} \approx 4.4444

Summary of Values

  • sinh(x)=0.225\sinh(x) = 0.225
  • tanh(x)0.2195\tanh(x) \approx 0.2195
  • coth(x)4.5556\coth(x) \approx 4.5556
  • sech(x)0.9756\text{sech}(x) \approx 0.9756
  • csch(x)4.4444\text{csch}(x) \approx 4.4444

Would you like more details on any step, or have further questions?


  1. What is the general form of hyperbolic identities?
  2. How does the identity cosh2(x)sinh2(x)=1\cosh^2(x) - \sinh^2(x) = 1 relate to trigonometric identities?
  3. Can the hyperbolic functions be applied to complex numbers?
  4. How do hyperbolic functions relate to exponential functions?
  5. What are some real-world applications of hyperbolic functions?

Tip: Remember that hyperbolic functions can simplify the analysis of hyperbolic shapes and are widely used in engineering and physics, especially in the study of catenary curves.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Trigonometric Identities

Formulas

cosh^2(x) - sinh^2(x) = 1
tanh(x) = sinh(x) / cosh(x)
coth(x) = cosh(x) / sinh(x)
sech(x) = 1 / cosh(x)
csch(x) = 1 / sinh(x)

Theorems

Hyperbolic identities

Suitable Grade Level

Grades 11-12