Math Problem Statement

We are tasked to calculate \(\cosh(x)\), \(\text{sech}(x)\), \(\text{csch}(x)\), and \(\tanh(x)\) given that \(\sinh(x) = \frac{1}{3}\).

Solution

We are tasked to calculate cosh(x)\cosh(x), sech(x)\text{sech}(x), csch(x)\text{csch}(x), and tanh(x)\tanh(x) given that sinh(x)=13\sinh(x) = \frac{1}{3}.

Step 1: Relation between sinh(x)\sinh(x) and cosh(x)\cosh(x)

From the hyperbolic identity: cosh2(x)sinh2(x)=1\cosh^2(x) - \sinh^2(x) = 1 Substituting sinh(x)=13\sinh(x) = \frac{1}{3}: cosh2(x)(13)2=1\cosh^2(x) - \left(\frac{1}{3}\right)^2 = 1 cosh2(x)19=1\cosh^2(x) - \frac{1}{9} = 1 cosh2(x)=1+19=109\cosh^2(x) = 1 + \frac{1}{9} = \frac{10}{9} cosh(x)=109=103\cosh(x) = \sqrt{\frac{10}{9}} = \frac{\sqrt{10}}{3}

Step 2: Calculate the other hyperbolic functions

(a) sech(x)\text{sech}(x):

sech(x)=1cosh(x)\text{sech}(x) = \frac{1}{\cosh(x)} Substituting cosh(x)=103\cosh(x) = \frac{\sqrt{10}}{3}: sech(x)=1103=310=31010\text{sech}(x) = \frac{1}{\frac{\sqrt{10}}{3}} = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}

(b) csch(x)\text{csch}(x):

csch(x)=1sinh(x)\text{csch}(x) = \frac{1}{\sinh(x)} Substituting sinh(x)=13\sinh(x) = \frac{1}{3}: csch(x)=113=3\text{csch}(x) = \frac{1}{\frac{1}{3}} = 3

(c) tanh(x)\tanh(x):

tanh(x)=sinh(x)cosh(x)\tanh(x) = \frac{\sinh(x)}{\cosh(x)} Substituting sinh(x)=13\sinh(x) = \frac{1}{3} and cosh(x)=103\cosh(x) = \frac{\sqrt{10}}{3}: tanh(x)=13103=110=1010\tanh(x) = \frac{\frac{1}{3}}{\frac{\sqrt{10}}{3}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}

Final Answers:

  1. cosh(x)=103\cosh(x) = \frac{\sqrt{10}}{3}
  2. sech(x)=31010\text{sech}(x) = \frac{3\sqrt{10}}{10}
  3. csch(x)=3\text{csch}(x) = 3
  4. tanh(x)=1010\tanh(x) = \frac{\sqrt{10}}{10}

Would you like further details on any of these calculations? Here are related questions for practice:

  1. What is the significance of hyperbolic functions in geometry?
  2. Can you prove the hyperbolic identity used here?
  3. How do hyperbolic functions relate to exponential functions?
  4. What is the range of tanh(x)\tanh(x)?
  5. How do you calculate hyperbolic functions for complex numbers?

Tip: Always verify the domain and range of hyperbolic functions when solving such problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Algebra
Trigonometry

Formulas

\cosh^2(x) - \sinh^2(x) = 1
\text{sech}(x) = \frac{1}{\cosh(x)}
\text{csch}(x) = \frac{1}{\sinh(x)}
\tanh(x) = \frac{\sinh(x)}{\cosh(x)}

Theorems

Hyperbolic Identity

Suitable Grade Level

Grades 10-12