Math Problem Statement

Find the determinant, cofactor matrix, adjoint, and inverse of the given 3x3 matrix A.

Solution

Let's solve this matrix problem step-by-step.

The matrix AA given is:

A=[203212303]A = \begin{bmatrix} 2 & 0 & 3 \\ 2 & 1 & -2 \\ -3 & 0 & 3 \end{bmatrix}

We need to solve four parts:

Part (a): Find the Determinant of AA

To find det(A)\det(A) of a 3x3 matrix, use the formula:

det(A)=a(eifh)b(difg)+c(dheg)\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)

Where:

A=[abcdefghi]A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}

For matrix AA, we have:

a=2,  b=0,  c=3a = 2, \; b = 0, \; c = 3 d=2,  e=1,  f=2d = 2, \; e = 1, \; f = -2 g=3,  h=0,  i=3g = -3, \; h = 0, \; i = 3

Substitute these values:

det(A)=2(13(2)0)0(23(2)(3))+3(201(3))\det(A) = 2(1 \cdot 3 - (-2) \cdot 0) - 0(2 \cdot 3 - (-2) \cdot (-3)) + 3(2 \cdot 0 - 1 \cdot (-3)) =2(3)+3(3)=6+9=15= 2(3) + 3(3) = 6 + 9 = 15

So, det(A)=15\det(A) = 15.

Part (b): Find the Matrix of Cofactors of AA

To find the cofactor matrix CC, calculate the cofactor for each element by removing the row and column of each element and finding the determinant of the resulting 2x2 matrix.

Let's calculate each cofactor:

  1. C11=det[1203]=13(2)0=3C_{11} = \det \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} = 1 \cdot 3 - (-2) \cdot 0 = 3
  2. C12=det[2233]=(23(2)(3))=(66)=0C_{12} = -\det \begin{bmatrix} 2 & -2 \\ -3 & 3 \end{bmatrix} = -(2 \cdot 3 - (-2) \cdot (-3)) = -(6 - 6) = 0
  3. C13=det[2130]=201(3)=3C_{13} = \det \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} = 2 \cdot 0 - 1 \cdot (-3) = 3
  4. C21=det[0303]=0C_{21} = -\det \begin{bmatrix} 0 & 3 \\ 0 & 3 \end{bmatrix} = 0
  5. C22=det[2333]=233(3)=15C_{22} = \det \begin{bmatrix} 2 & 3 \\ -3 & 3 \end{bmatrix} = 2 \cdot 3 - 3 \cdot (-3) = 15
  6. C23=det[2030]=0C_{23} = -\det \begin{bmatrix} 2 & 0 \\ -3 & 0 \end{bmatrix} = 0
  7. C31=det[0312]=0(2)31=3C_{31} = \det \begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix} = 0 \cdot (-2) - 3 \cdot 1 = -3
  8. C32=det[2322]=(2(2)32)=10C_{32} = -\det \begin{bmatrix} 2 & 3 \\ 2 & -2 \end{bmatrix} = -(2 \cdot (-2) - 3 \cdot 2) = 10
  9. C33=det[2021]=210=2C_{33} = \det \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} = 2 \cdot 1 - 0 = 2

Thus, the cofactor matrix CC is:

C=[30301503102]C = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 15 & 0 \\ -3 & 10 & 2 \end{bmatrix}

Part (c): Find the Adjoint of AA

The adjoint of AA, adj(A)\text{adj}(A), is the transpose of the cofactor matrix CC:

adj(A)=CT=[30301510302]\text{adj}(A) = C^T = \begin{bmatrix} 3 & 0 & -3 \\ 0 & 15 & 10 \\ 3 & 0 & 2 \end{bmatrix}

Part (d): Find the Inverse of AA

The inverse of AA is given by:

A1=1det(A)adj(A)A^{-1} = \frac{1}{\det(A)} \text{adj}(A)

Since det(A)=15\det(A) = 15:

A1=115[30301510302]=[31503150110153150215]A^{-1} = \frac{1}{15} \begin{bmatrix} 3 & 0 & -3 \\ 0 & 15 & 10 \\ 3 & 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{15} & 0 & \frac{-3}{15} \\ 0 & 1 & \frac{10}{15} \\ \frac{3}{15} & 0 & \frac{2}{15} \end{bmatrix}

Simplify each entry:

A1=[150150123150215]A^{-1} = \begin{bmatrix} \frac{1}{5} & 0 & -\frac{1}{5} \\ 0 & 1 & \frac{2}{3} \\ \frac{1}{5} & 0 & \frac{2}{15} \end{bmatrix}


Let me know if you would like more details on any step, or if you have questions!

Related Questions

  1. What is the significance of the determinant when finding the inverse of a matrix?
  2. How can you determine if a matrix is invertible just by looking at its determinant?
  3. What are some applications of the adjoint matrix in solving linear systems?
  4. How does cofactor expansion help in finding determinants for larger matrices?
  5. Can a matrix with zero entries have an inverse? Why or why not?

Tip

For 3x3 matrices, always simplify each minor determinant as you go to keep calculations manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Determinant
Cofactor Matrix
Adjoint of a Matrix
Inverse Matrix

Formulas

Determinant of a 3x3 matrix: det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)
Cofactor calculation: Cij = (-1)^(i+j) * det(minor of A at position (i, j))
Adjoint matrix: adj(A) = transpose of the cofactor matrix
Inverse of a matrix: A^(-1) = (1 / det(A)) * adj(A)

Theorems

Inverse Matrix Theorem
Properties of Determinants
Cofactor Expansion

Suitable Grade Level

College-Level Linear Algebra