Math Problem Statement

знайди відповіді

Обчисліть інтеграл: I = ∫[2, 7^(1/3)] (2x / sqrt(3x + 2)) dx.

Solution

Let’s analyze the problem from the uploaded image.


Problem Summary:

We are given the definite integral: I=271/32x3x+2dxI = \int_{2}^{7^{1/3}} \frac{2x}{\sqrt{3x+2}} dx The task involves:

  1. Selecting an appropriate substitution from a list.
  2. Computing the integral by changing the variable, adjusting the integration limits, and evaluating the result.

Step-by-Step Solution:

1. Choose Substitution:

From the structure of the integral, notice the expression 3x+2\sqrt{3x+2} in the denominator. A substitution related to 3x+23x+2 simplifies the integral. The substitution is: x=13t223x = \frac{1}{3} t^2 - \frac{2}{3} where:

  • dx=23tdtdx = \frac{2}{3} t \, dt
  • 3x+2=t23x+2 = t^2.

2. Change the Integration Limits:

  • When x=2x = 2: 3(2)+2=t2    t=8.3(2) + 2 = t^2 \implies t = \sqrt{8}.

  • When x=71/3x = 7^{1/3}: 3(71/3)+2=t2    t=371/3+2.3\left(7^{1/3}\right) + 2 = t^2 \implies t = \sqrt{3 \cdot 7^{1/3} + 2}.

Thus, the new limits are: A=8,B=371/3+2.A = \sqrt{8}, \quad B = \sqrt{3 \cdot 7^{1/3} + 2}.

3. Substitute into the Integral:

After substitution, the integral becomes: I=AB213(t223)tt23tdt.I = \int_{A}^{B} \frac{2 \cdot \frac{1}{3}(t^2 - \frac{2}{3})}{t \cdot t} \cdot \frac{2}{3} t \, dt. Simplify: I=AB49(t223)t2dt.I = \int_{A}^{B} \frac{\frac{4}{9} (t^2 - \frac{2}{3})}{t^2} \, dt.

Separate the terms: I=49AB(123t2)dt.I = \frac{4}{9} \int_{A}^{B} \left(1 - \frac{2}{3t^2}\right) \, dt.

Split the integral: I=49[AB1dt23AB1t2dt].I = \frac{4}{9} \left[\int_{A}^{B} 1 \, dt - \frac{2}{3} \int_{A}^{B} \frac{1}{t^2} \, dt\right].

4. Evaluate the Integral:

  • First term: AB1dt=[t]AB=BA.\int_{A}^{B} 1 \, dt = [t]_{A}^{B} = B - A.

  • Second term: AB1t2dt=[1t]AB=1B+1A.\int_{A}^{B} \frac{1}{t^2} \, dt = \left[-\frac{1}{t}\right]_{A}^{B} = -\frac{1}{B} + \frac{1}{A}.

Substitute back: I=49[(BA)23(1B+1A)].I = \frac{4}{9} \left[(B - A) - \frac{2}{3} \left(-\frac{1}{B} + \frac{1}{A}\right)\right].


5. Numerical Evaluation:

  1. Calculate A=82.828A = \sqrt{8} \approx 2.828.
  2. Calculate B=371/3+2B = \sqrt{3 \cdot 7^{1/3} + 2}:
    • Approximate 71/31.9137^{1/3} \approx 1.913.
    • B=31.913+2=7.7392.779B = \sqrt{3 \cdot 1.913 + 2} = \sqrt{7.739} \approx 2.779.

Substitute AA and BB into the expression for II: I=49[(2.7792.828)23(12.779+12.828)].I = \frac{4}{9} \left[(2.779 - 2.828) - \frac{2}{3} \left(-\frac{1}{2.779} + \frac{1}{2.828}\right)\right].

Compute step-by-step:

  • BA=2.7792.828=0.049B - A = 2.779 - 2.828 = -0.049.
  • 1B+1A=12.779+12.8280.360+0.354=0.006-\frac{1}{B} + \frac{1}{A} = -\frac{1}{2.779} + \frac{1}{2.828} \approx -0.360 + 0.354 = -0.006.
  • Multiply by 23-\frac{2}{3}: 230.0060.004-\frac{2}{3} \cdot -0.006 \approx 0.004.
  • Combine: 0.049+0.004=0.045-0.049 + 0.004 = -0.045.
  • Multiply by 49\frac{4}{9}: 490.0450.02\frac{4}{9} \cdot -0.045 \approx -0.02.

Final result: I0.02.I \approx -0.02.


6. Final Answer:

The value of the definite integral to 2 decimal places is: I0.02.I \approx -0.02.


Would you like further clarification or detailed steps?


Related Questions:

  1. What other substitutions could simplify integrals involving radicals?
  2. How does the choice of substitution affect the limits of integration?
  3. What numerical methods can approximate definite integrals if manual computation is too complex?
  4. Can this integral be solved using symbolic computation software?
  5. How is the substitution method applied in solving improper integrals?

Tip:

Always simplify your substitution by aligning it with the structure of the given integral (e.g., matching square roots or denominators).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Definite Integrals
Substitution Method

Formulas

∫ f(x) dx = F(x) + C (antiderivative rule)
Substitution: x = g(t) → dx = g'(t) dt
Definite integral: ∫[a, b] f(x) dx = F(b) - F(a)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

University Level Calculus or Advanced High School (Grades 11-12)