Math Problem Statement

Một CLB Toán học tổ chức trò chơi sử dụng đồng xu để xếp thành một kim tự tháp. Nhóm đã sử dụng 23,520 đồng tiền xu để xếp một mô hình kim tự tháp. Biết rằng tầng dưới cùng có 3020 đồng xu và cứ lên thêm một tầng thì số đồng xu giảm đi 120 đồng. Hỏi mô hình kim tự tháp này có tất cả bao nhiêu tầng?

Solution

The problem involves finding the total number of levels (tầng) in a pyramid built using coins. Here’s the analysis of the question:


Given:

  1. Total coins used: 23,52023,520 coins.
  2. The number of coins in the bottom level (first level): 3,0203,020.
  3. For each higher level, the number of coins decreases by 120120.

Goal:

Determine the total number of levels in the pyramid.


Solution:

The number of coins in each level forms an arithmetic sequence: an=a1(n1)da_n = a_1 - (n-1)d Where:

  • ana_n: number of coins in the nn-th level.
  • a1=3020a_1 = 3020: number of coins in the first (bottom) level.
  • d=120d = 120: common difference (the decrease in coins for each level).
  • nn: total number of levels.

The total number of coins used in the pyramid can be expressed as the sum of an arithmetic sequence: Sn=n2(a1+an)S_n = \frac{n}{2} \left( a_1 + a_n \right) Where: Sn=23,520S_n = 23,520

Substitute an=a1(n1)da_n = a_1 - (n-1)d: Sn=n2(a1+(a1(n1)d))S_n = \frac{n}{2} \left( a_1 + \left( a_1 - (n-1)d \right) \right) Simplify: Sn=n2(2a1(n1)d)S_n = \frac{n}{2} \left( 2a_1 - (n-1)d \right) 23,520=n2(2(3020)(n1)(120))23,520 = \frac{n}{2} \left( 2(3020) - (n-1)(120) \right) 23,520=n2(6040120n+120)23,520 = \frac{n}{2} \left( 6040 - 120n + 120 \right) 23,520=n2(6160120n)23,520 = \frac{n}{2} \left( 6160 - 120n \right) 23,520=3080n60n223,520 = 3080n - 60n^2 Rearrange into standard quadratic form: 60n23080n+23,520=060n^2 - 3080n + 23,520 = 0 Simplify: n251.33n+392=0n^2 - 51.33n + 392 = 0


Solve the quadratic equation:

Using the quadratic formula: n=b±b24ac2an = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Here:

  • a=1a = 1,
  • b=51.33b = -51.33,
  • c=392c = 392.

Substitute: n=(51.33)±(51.33)24(1)(392)2(1)n = \frac{-(-51.33) \pm \sqrt{(-51.33)^2 - 4(1)(392)}}{2(1)} n=51.33±2635.4715682n = \frac{51.33 \pm \sqrt{2635.47 - 1568}}{2} n=51.33±1067.472n = \frac{51.33 \pm \sqrt{1067.47}}{2} n=51.33±32.672n = \frac{51.33 \pm 32.67}{2}

Choose the positive root: n=51.33+32.672=842=42n = \frac{51.33 + 32.67}{2} = \frac{84}{2} = 42


Final Answer:

The pyramid has 42 levels.


Let me know if you want further details or clarification! Here are some related questions:

  1. How is the formula for the sum of an arithmetic sequence derived?
  2. What happens if the total number of coins is slightly different?
  3. How do changes in the common difference dd affect the solution?
  4. What are some real-world applications of arithmetic sequences?
  5. Can we solve this problem without using the quadratic equation?

Tip: Always double-check calculations in word problems by substituting the result back into the original equation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Sequences
Quadratic Equations
Summation of Arithmetic Sequence

Formulas

Sum of an arithmetic sequence: Sn = (n / 2) * (a1 + an)
General term of an arithmetic sequence: an = a1 - (n - 1) * d
Quadratic equation formula: n = (-b ± sqrt(b^2 - 4ac)) / 2a

Theorems

Properties of Arithmetic Sequences
Quadratic Formula

Suitable Grade Level

Grades 9-12