Math Problem Statement

Use the Bisection Method to find the root of the function f(t) = e^(-x) - 3log(x) accurate to within ε = 0.01. Given that x_a = 0.5 and x_b = 1.5.

Solution

To solve this problem using the Bisection Method, we find the root of f(t)=ex3logxf(t) = e^{-x} - 3\log x within the interval [xa,xb]=[0.5,1.5][x_a, x_b] = [0.5, 1.5], with a tolerance ε=0.01\varepsilon = 0.01.

Steps of the Bisection Method:

  1. Define the function: f(t)=ex3logxf(t) = e^{-x} - 3\log x.

  2. Check initial values: Evaluate f(0.5)f(0.5) and f(1.5)f(1.5) to confirm the root lies in [0.5,1.5][0.5, 1.5]. The sign of f(0.5)f(0.5) and f(1.5)f(1.5) must differ.

  3. Compute the midpoint: c=xa+xb2c = \frac{x_a + x_b}{2}, and evaluate f(c)f(c).

  4. Update the interval: If f(c)f(c) has the same sign as f(xa)f(x_a), set xa=cx_a = c; otherwise, set xb=cx_b = c.

  5. Check for convergence: Stop if xbxa<ε|x_b - x_a| < \varepsilon, or f(c)<ε|f(c)| < \varepsilon.

Let’s calculate step by step.


Calculation:

  1. Initial evaluations: f(0.5)=e0.53log(0.5)=0.6065(2.0794)=2.6859>0,f(0.5) = e^{-0.5} - 3\log(0.5) = 0.6065 - (-2.0794) = 2.6859 > 0, f(1.5)=e1.53log(1.5)=0.22311.2164=0.9933<0.f(1.5) = e^{-1.5} - 3\log(1.5) = 0.2231 - 1.2164 = -0.9933 < 0. Since f(0.5)>0f(0.5) > 0 and f(1.5)<0f(1.5) < 0, a root exists in [0.5,1.5][0.5, 1.5].

  2. First midpoint: c1=0.5+1.52=1.0,f(1.0)=e13log(1.0)=0.36790=0.3679>0.c_1 = \frac{0.5 + 1.5}{2} = 1.0, \quad f(1.0) = e^{-1} - 3\log(1.0) = 0.3679 - 0 = 0.3679 > 0. Update interval: [xa,xb]=[1.0,1.5][x_a, x_b] = [1.0, 1.5].

  3. Second midpoint: c2=1.0+1.52=1.25,f(1.25)=e1.253log(1.25)=0.28650.6685=0.3820<0.c_2 = \frac{1.0 + 1.5}{2} = 1.25, \quad f(1.25) = e^{-1.25} - 3\log(1.25) = 0.2865 - 0.6685 = -0.3820 < 0. Update interval: [xa,xb]=[1.0,1.25][x_a, x_b] = [1.0, 1.25].

  4. Third midpoint: c3=1.0+1.252=1.125,f(1.125)=e1.1253log(1.125)=0.32470.3955=0.0708<0.c_3 = \frac{1.0 + 1.25}{2} = 1.125, \quad f(1.125) = e^{-1.125} - 3\log(1.125) = 0.3247 - 0.3955 = -0.0708 < 0. Update interval: [xa,xb]=[1.0,1.125][x_a, x_b] = [1.0, 1.125].

  5. Fourth midpoint: c4=1.0+1.1252=1.0625,f(1.0625)=e1.06253log(1.0625)=0.34580.1814=0.1644>0.c_4 = \frac{1.0 + 1.125}{2} = 1.0625, \quad f(1.0625) = e^{-1.0625} - 3\log(1.0625) = 0.3458 - 0.1814 = 0.1644 > 0. Update interval: [xa,xb]=[1.0625,1.125][x_a, x_b] = [1.0625, 1.125].

  6. Fifth midpoint: c5=1.0625+1.1252=1.09375,f(1.09375)=e1.093753log(1.09375)=0.33510.2868=0.0483>0.c_5 = \frac{1.0625 + 1.125}{2} = 1.09375, \quad f(1.09375) = e^{-1.09375} - 3\log(1.09375) = 0.3351 - 0.2868 = 0.0483 > 0. Update interval: [xa,xb]=[1.09375,1.125][x_a, x_b] = [1.09375, 1.125].

  7. Sixth midpoint: c6=1.09375+1.1252=1.109375,f(1.109375)=e1.1093753log(1.109375)=0.32930.3498=0.0205<0.c_6 = \frac{1.09375 + 1.125}{2} = 1.109375, \quad f(1.109375) = e^{-1.109375} - 3\log(1.109375) = 0.3293 - 0.3498 = -0.0205 < 0. Update interval: [xa,xb]=[1.09375,1.109375][x_a, x_b] = [1.09375, 1.109375].


Convergence:

After several iterations, the root converges to approximately: c \approx 1.1 \quad \text{(to within tolerance \varepsilon = 0.01)}.

Would you like a detailed step-by-step explanation or a plot of the function and iterations?


Related Questions:

  1. How does the Bisection Method ensure convergence for continuous functions?
  2. Can the Bisection Method handle multiple roots in a single interval?
  3. What are the limitations of the Bisection Method compared to Newton’s method?
  4. How does changing ε\varepsilon affect the accuracy and iterations?
  5. How can we visualize the function’s behavior over the given interval?

Tip:

Always verify that the function changes signs over the interval [xa,xb][x_a, x_b] before applying the Bisection Method.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Methods
Root-Finding Algorithms
Logarithmic Functions
Exponential Functions

Formulas

f(t) = e^(-x) - 3log(x)
c = (x_a + x_b) / 2
|x_b - x_a| < ε

Theorems

Intermediate Value Theorem (basis for the Bisection Method)

Suitable Grade Level

Undergraduate Level