Math Problem Statement

(-3ab^2-7bc^2)^3

Solution

To simplify or expand the expression (3ab27bc2)3(-3ab^2 - 7bc^2)^3, let's follow the steps:

Step 1: Recall the Binomial Theorem

The Binomial Theorem states that for (x+y)n(x + y)^n, (x+y)n=k=0n(nk)xnkyk,(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k, where (nk)=n!k!(nk)!\binom{n}{k} = \frac{n!}{k!(n-k)!} is the binomial coefficient.

For (3ab27bc2)3(-3ab^2 - 7bc^2)^3, substitute x=3ab2x = -3ab^2, y=7bc2y = -7bc^2, and n=3n = 3.

Step 2: Expand the Expression

(3ab27bc2)3=k=03(3k)(3ab2)3k(7bc2)k.(-3ab^2 - 7bc^2)^3 = \sum_{k=0}^3 \binom{3}{k} (-3ab^2)^{3-k} (-7bc^2)^k.

Compute each term:

Term 1: k=0k = 0

(30)(3ab2)3(7bc2)0=1(3)3(ab2)31=27a3b6.\binom{3}{0} (-3ab^2)^3 (-7bc^2)^0 = 1 \cdot (-3)^3 (ab^2)^3 \cdot 1 = -27a^3b^6.

Term 2: k=1k = 1

(31)(3ab2)2(7bc2)1=3(3)2(ab2)2(7)(bc2)=39(7)a2b4c2=189a2b4c2.\binom{3}{1} (-3ab^2)^2 (-7bc^2)^1 = 3 \cdot (-3)^2 (ab^2)^2 \cdot (-7)(bc^2) = 3 \cdot 9 \cdot (-7) \cdot a^2b^4c^2 = -189a^2b^4c^2.

Term 3: k=2k = 2

(32)(3ab2)1(7bc2)2=3(3)1(ab2)1(7)2(bc2)2=3(3)49ab3c4=441ab3c4.\binom{3}{2} (-3ab^2)^1 (-7bc^2)^2 = 3 \cdot (-3)^1 (ab^2)^1 \cdot (-7)^2 (bc^2)^2 = 3 \cdot (-3) \cdot 49 \cdot ab^3c^4 = -441ab^3c^4.

Term 4: k=3k = 3

(33)(3ab2)0(7bc2)3=11(7)3(bc2)3=343b3c6.\binom{3}{3} (-3ab^2)^0 (-7bc^2)^3 = 1 \cdot 1 \cdot (-7)^3 (bc^2)^3 = -343b^3c^6.

Step 3: Combine the Terms

(3ab27bc2)3=27a3b6189a2b4c2441ab3c4343b3c6.(-3ab^2 - 7bc^2)^3 = -27a^3b^6 - 189a^2b^4c^2 - 441ab^3c^4 - 343b^3c^6.

Final Answer:

(3ab27bc2)3=27a3b6189a2b4c2441ab3c4343b3c6.(-3ab^2 - 7bc^2)^3 = -27a^3b^6 - 189a^2b^4c^2 - 441ab^3c^4 - 343b^3c^6.

Would you like further explanation on any step?


5 Related Questions:

  1. How do you calculate binomial coefficients efficiently?
  2. Can this be visualized as a polynomial expansion in multiple variables?
  3. How does the degree of the final polynomial relate to the original expression?
  4. What happens if a=0a = 0 or b=0b = 0 in this polynomial?
  5. Can this expansion be used in practical applications like physics or engineering?

Tip:

Always check your signs when raising negative terms to a power, as even and odd exponents alternate the sign!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Polynomial Expansion

Formulas

Binomial Theorem: (x + y)^n = Σ (n choose k) * x^(n-k) * y^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 9-11