To simplify or expand the expression (−3ab2−7bc2)3, let's follow the steps:
Step 1: Recall the Binomial Theorem
The Binomial Theorem states that for (x+y)n,
(x+y)n=∑k=0n(kn)xn−kyk,
where (kn)=k!(n−k)!n! is the binomial coefficient.
For (−3ab2−7bc2)3, substitute x=−3ab2, y=−7bc2, and n=3.
Step 2: Expand the Expression
(−3ab2−7bc2)3=∑k=03(k3)(−3ab2)3−k(−7bc2)k.
Compute each term:
Term 1: k=0
(03)(−3ab2)3(−7bc2)0=1⋅(−3)3(ab2)3⋅1=−27a3b6.
Term 2: k=1
(13)(−3ab2)2(−7bc2)1=3⋅(−3)2(ab2)2⋅(−7)(bc2)=3⋅9⋅(−7)⋅a2b4c2=−189a2b4c2.
Term 3: k=2
(23)(−3ab2)1(−7bc2)2=3⋅(−3)1(ab2)1⋅(−7)2(bc2)2=3⋅(−3)⋅49⋅ab3c4=−441ab3c4.
Term 4: k=3
(33)(−3ab2)0(−7bc2)3=1⋅1⋅(−7)3(bc2)3=−343b3c6.
Step 3: Combine the Terms
(−3ab2−7bc2)3=−27a3b6−189a2b4c2−441ab3c4−343b3c6.
Final Answer:
(−3ab2−7bc2)3=−27a3b6−189a2b4c2−441ab3c4−343b3c6.
Would you like further explanation on any step?
5 Related Questions:
- How do you calculate binomial coefficients efficiently?
- Can this be visualized as a polynomial expansion in multiple variables?
- How does the degree of the final polynomial relate to the original expression?
- What happens if a=0 or b=0 in this polynomial?
- Can this expansion be used in practical applications like physics or engineering?
Tip:
Always check your signs when raising negative terms to a power, as even and odd exponents alternate the sign!