Math Problem Statement

Expand the binomial expression (a - 2b)^3.

Solution

The expression in the image is (a2b)3(a - 2b)^3. Let's expand it using the binomial theorem:

Binomial Expansion Formula:

(x+y)n=k=0n(nk)xnkyk(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k

Here, a2ba - 2b is the binomial, and n=3n = 3. Substituting x=ax = a and y=2by = -2b, we expand:

(a2b)3=(30)a3(2b)0+(31)a2(2b)1+(32)a1(2b)2+(33)a0(2b)3(a - 2b)^3 = \binom{3}{0} a^3 (-2b)^0 + \binom{3}{1} a^2 (-2b)^1 + \binom{3}{2} a^1 (-2b)^2 + \binom{3}{3} a^0 (-2b)^3

Step-by-step Calculation:

  1. (30)a3(2b)0=1a31=a3\binom{3}{0} a^3 (-2b)^0 = 1 \cdot a^3 \cdot 1 = a^3
  2. (31)a2(2b)1=3a2(2b)=6a2b\binom{3}{1} a^2 (-2b)^1 = 3 \cdot a^2 \cdot (-2b) = -6a^2b
  3. (32)a1(2b)2=3a(4b2)=12ab2\binom{3}{2} a^1 (-2b)^2 = 3 \cdot a \cdot (4b^2) = 12ab^2
  4. (33)a0(2b)3=11(8b3)=8b3\binom{3}{3} a^0 (-2b)^3 = 1 \cdot 1 \cdot (-8b^3) = -8b^3

Final Expanded Form:

(a2b)3=a36a2b+12ab28b3(a - 2b)^3 = a^3 - 6a^2b + 12ab^2 - 8b^3

Would you like a detailed explanation of any step or further examples? 😊


Related Questions:

  1. What is the binomial expansion for (a+2b)3(a + 2b)^3?
  2. How does the expansion change if the exponent is 4?
  3. What happens when b=0b = 0 in the expansion of (a2b)3(a - 2b)^3?
  4. How is Pascal's triangle used in binomial expansion?
  5. Can you derive the general term in the expansion of (a2b)n(a - 2b)^n?

Tip:

When expanding binomials, remember to carefully apply the signs for negative terms, as errors often occur there!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Algebra

Formulas

(x + y)^n = Σ (nCk) * x^(n-k) * y^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12