Math Problem Statement

Obtain the expansion of (1 - 2x)^3. Hence write down the expansion of (1 - 2/x)^3. Find the constant term in the expansion of (1 - 2x)^3(1 - 2/x)^3.

Solution

Solution to the Problem

Part (a): Expansion of (12x)3(1 - 2x)^3

The binomial expansion formula is given by: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k For (12x)3(1 - 2x)^3, we substitute a=1a = 1, b=2xb = -2x, and n=3n = 3: (12x)3=(30)(1)3(2x)0+(31)(1)2(2x)1+(32)(1)1(2x)2+(33)(1)0(2x)3(1 - 2x)^3 = \binom{3}{0}(1)^3(-2x)^0 + \binom{3}{1}(1)^2(-2x)^1 + \binom{3}{2}(1)^1(-2x)^2 + \binom{3}{3}(1)^0(-2x)^3

Expanding each term:

  • First term: (30)(1)3(2x)0=1\binom{3}{0}(1)^3(-2x)^0 = 1
  • Second term: (31)(1)2(2x)1=3(2x)=6x\binom{3}{1}(1)^2(-2x)^1 = 3(-2x) = -6x
  • Third term: (32)(1)1(2x)2=3(4x2)=12x2\binom{3}{2}(1)^1(-2x)^2 = 3(4x^2) = 12x^2
  • Fourth term: (33)(1)0(2x)3=1(8x3)=8x3\binom{3}{3}(1)^0(-2x)^3 = 1(-8x^3) = -8x^3

Thus: (12x)3=16x+12x28x3(1 - 2x)^3 = 1 - 6x + 12x^2 - 8x^3


Part (b): Expansion of (12x)3\left(1 - \frac{2}{x}\right)^3

Here, we apply the same formula but replace xx with 1x\frac{1}{x} in the expansion of (12x)3(1 - 2x)^3.

Substitute x1xx \to \frac{1}{x}: (12x)3=16(1x)+12(1x2)8(1x3)\left(1 - \frac{2}{x}\right)^3 = 1 - 6\left(\frac{1}{x}\right) + 12\left(\frac{1}{x^2}\right) - 8\left(\frac{1}{x^3}\right)

Simplify: (12x)3=16x+12x28x3\left(1 - \frac{2}{x}\right)^3 = 1 - \frac{6}{x} + \frac{12}{x^2} - \frac{8}{x^3}


Part (c): Finding the constant term in the expansion of (12x)3(12x)3(1 - 2x)^3 \cdot \left(1 - \frac{2}{x}\right)^3

To find the constant term, we consider the product: Constant term in (12x)3(12x)3\text{Constant term in } (1 - 2x)^3 \cdot \left(1 - \frac{2}{x}\right)^3 Using the expansions from (a) and (b): (12x)3=16x+12x28x3(1 - 2x)^3 = 1 - 6x + 12x^2 - 8x^3 (12x)3=16x+12x28x3\left(1 - \frac{2}{x}\right)^3 = 1 - \frac{6}{x} + \frac{12}{x^2} - \frac{8}{x^3}

Multiply the terms and identify the constant term (terms with no xx):

  • From 11=11 \cdot 1 = 1
  • From (6x)(6x)=36(-6x) \cdot \left(-\frac{6}{x}\right) = 36
  • From (12x2)(12x2)=144(12x^2) \cdot \left(\frac{12}{x^2}\right) = 144
  • From (8x3)(8x3)=64(-8x^3) \cdot \left(-\frac{8}{x^3}\right) = 64

Summing these contributions: Constant term=1+36+144+64=245\text{Constant term} = 1 + 36 + 144 + 64 = 245

Thus, the constant term is: 245\boxed{245}


Recap and Questions:

  1. Do you want a deeper explanation of the binomial expansion formula?
  2. Should I show how to simplify products in more detail?
  3. Would you like to see a general formula for combining expansions?
  4. Do you want to know how binomial coefficients are calculated?
  5. Should I explain why terms with xx cancel out for the constant term?

Tip:

When finding the constant term in products of expansions, always focus on terms whose exponents cancel each other.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Multiplying Series
Constant Term

Formulas

(a + b)^n = Σ(k=0 to n) [C(n, k) * a^(n-k) * b^k]
Identifying terms in expansions for constant values.

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12