Math Problem Statement

Expand (1 + 2x)^2 / (2 - x) in ascending powers of x up to and including the term in x^3 and state the values of x for which the expansion is valid.

Solution

We are asked to expand (1+2x)2(2x)\frac{(1 + 2x)^2}{(2 - x)} in ascending powers of xx up to and including the term in x3x^3, and to state the values of xx for which the expansion is valid.

Step-by-Step Solution:

  1. First, expand the numerator (1+2x)2(1 + 2x)^2: (1+2x)2=12+2(1)(2x)+(2x)2=1+4x+4x2(1 + 2x)^2 = 1^2 + 2(1)(2x) + (2x)^2 = 1 + 4x + 4x^2

  2. Next, express the denominator 12x\frac{1}{2 - x} as a binomial series expansion. We want to expand this in powers of xx, treating it like 1ax\frac{1}{a - x}, where a=2a = 2. Using the binomial expansion for 1ax=1a(1xa)1\frac{1}{a - x} = \frac{1}{a} \left(1 - \frac{x}{a}\right)^{-1}, we have: 12x=12(1x2)1\frac{1}{2 - x} = \frac{1}{2} \left( 1 - \frac{x}{2} \right)^{-1} Using the binomial series for (1z)1=1+z+z2+z3+(1 - z)^{-1} = 1 + z + z^2 + z^3 + \cdots when z<1|z| < 1, we get: 12x=12(1+x2+x24+x38+)\frac{1}{2 - x} = \frac{1}{2} \left(1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \cdots \right) Simplifying: 12x=12+x4+x28+x316+\frac{1}{2 - x} = \frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{16} + \cdots

  3. Multiply the expanded numerator and denominator: We now multiply (1+4x+4x2)(1 + 4x + 4x^2) by the expansion of 12x\frac{1}{2 - x}: (1+4x+4x2)(12+x4+x28+x316+)(1 + 4x + 4x^2)\left( \frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{16} + \cdots \right)

    Distribute each term:

    • 1×(12+x4+x28+x316)=12+x4+x28+x3161 \times \left(\frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{16}\right) = \frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{16}
    • 4x×(12+x4+x28)=2x+x2+x324x \times \left(\frac{1}{2} + \frac{x}{4} + \frac{x^2}{8}\right) = 2x + x^2 + \frac{x^3}{2}
    • 4x2×(12+x4)=2x2+x34x^2 \times \left(\frac{1}{2} + \frac{x}{4}\right) = 2x^2 + x^3
  4. Add the terms: Now combine all like terms up to x3x^3: 12+x4+x28+x316+2x+x2+x32+2x2+x3\frac{1}{2} + \frac{x}{4} + \frac{x^2}{8} + \frac{x^3}{16} + 2x + x^2 + \frac{x^3}{2} + 2x^2 + x^3 Grouping the powers of xx:

    • Constant: 12\frac{1}{2}
    • Coefficient of xx: x4+2x=9x4\frac{x}{4} + 2x = \frac{9x}{4}
    • Coefficient of x2x^2: x28+x2+2x2=25x28\frac{x^2}{8} + x^2 + 2x^2 = \frac{25x^2}{8}
    • Coefficient of x3x^3: x316+x32+x3=29x316\frac{x^3}{16} + \frac{x^3}{2} + x^3 = \frac{29x^3}{16}

    Therefore, the expansion up to the term in x3x^3 is: (1+2x)2(2x)=12+9x4+25x28+29x316+\frac{(1 + 2x)^2}{(2 - x)} = \frac{1}{2} + \frac{9x}{4} + \frac{25x^2}{8} + \frac{29x^3}{16} + \cdots

  5. Radius of convergence: The binomial series expansion 12x\frac{1}{2 - x} converges when x<2|x| < 2 (since we expanded around x=0x = 0).

Thus, the values of xx for which the expansion is valid are x<2|x| < 2.

Would you like to explore more details on any part of the process or have any further questions?


Here are 5 related questions to deepen understanding:

  1. How would the expansion change if the numerator were (12x)2(1 - 2x)^2 instead?
  2. Can you use this method to expand up to x4x^4?
  3. How does the general binomial expansion formula for (1z)n(1 - z)^{-n} work for non-integer values of nn?
  4. What happens if you expand around a different center, say x=1x = 1?
  5. How would you apply this method to functions that aren't rational expressions?

Tip: When using binomial expansions, always check the convergence radius to ensure the expansion is valid for your input values of xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Series Expansion
Algebraic Expansion
Series Convergence

Formulas

Binomial series expansion: (1 - z)^{-n} = 1 + nz + n(n+1)/2 z^2 + ...
(a + b)^2 = a^2 + 2ab + b^2

Theorems

Binomial Theorem

Suitable Grade Level

Undergraduate Math or Advanced High School (Grades 11-12)