Math Problem Statement

Evaluate the integral \( \int_0^1 x^6 (1-x)^7 \, dx \) and select the correct Beta function representation from the given options.

Solution

The question involves evaluating the following integral:

I=01x6(1x)7dxI = \int_0^1 x^6 (1-x)^7 \, dx

This integral is in the form of the Beta function B(m+1,n+1)B(m+1, n+1), which is defined as:

B(p,q)=01tp1(1t)q1dt,where p,q>0.B(p, q) = \int_0^1 t^{p-1} (1-t)^{q-1} \, dt, \quad \text{where } p, q > 0.


Step-by-Step Solution:

  1. Compare the given integral with the Beta function definition: 01x6(1x)7dx.\int_0^1 x^{6} (1-x)^{7} \, dx. Here:

    • x6x^6 corresponds to tp1t^{p-1}, so p1=6    p=7p-1 = 6 \implies p = 7,
    • (1x)7(1-x)^7 corresponds to (1t)q1(1-t)^{q-1}, so q1=7    q=8q-1 = 7 \implies q = 8.
  2. Therefore, the integral becomes: I=B(7,8).I = B(7, 8).


Final Answer:

The correct choice is:

(C) B(7,6)B(7, 6)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Beta Function
Definite Integration

Formulas

Beta function: \( B(p, q) = \int_0^1 t^{p-1} (1-t)^{q-1} \, dt \) for \( p, q > 0 \)

Theorems

Beta Function Definition

Suitable Grade Level

Undergraduate Calculus