Math Problem Statement

Solve the integral ∫₀^π/2 sin⁶(x)cos⁸(x)dx.

Solution

The given integral is:

I=0π2sin6xcos8xdxI = \int_0^{\frac{\pi}{2}} \sin^6{x} \cos^8{x} \, dx

We will solve this step by step.


Step 1: Beta Function Representation

The Beta function B(m,n)B(m, n) is defined as:

B(m,n)=20π2sin2m1(x)cos2n1(x)dxB(m, n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}(x) \cos^{2n-1}(x) \, dx

For sinaxcosbx\sin^a{x} \cos^b{x}, this formula applies when powers are rewritten as 2m12m-1 and 2n12n-1. Let's match this integral:

  • sin6xcos8x\sin^6{x} \cos^8{x}
    • Rewrite as sin23(x)cos24(x)\sin^{2 \cdot 3}(x) \cos^{2 \cdot 4}(x)
    • Thus, 2m1=72m-1 = 7 (so m=4m = 4) and 2n1=92n-1 = 9 (so n=5n = 5).

Step 2: Using Beta Function

The integral can be rewritten as:

I=12B(7+12,9+12)I = \frac{1}{2} B\left( \frac{7+1}{2}, \frac{9+1}{2} \right)

Simplify the arguments of BB:

  • 7+12=4\frac{7+1}{2} = 4
  • 9+12=5\frac{9+1}{2} = 5

Therefore:

I=12B(4,5)I = \frac{1}{2} B(4, 5)


Step 3: Beta Function and Gamma Function

The Beta function B(m,n)B(m, n) is related to the Gamma function Γ(x)\Gamma(x) as:

B(m,n)=Γ(m)Γ(n)Γ(m+n)B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}

For B(4,5)B(4, 5):

  • Γ(4)=(41)!=3!=6\Gamma(4) = (4-1)! = 3! = 6
  • Γ(5)=(51)!=4!=24\Gamma(5) = (5-1)! = 4! = 24
  • Γ(4+5)=Γ(9)=(91)!=8!=40320\Gamma(4+5) = \Gamma(9) = (9-1)! = 8! = 40320

Now compute B(4,5)B(4, 5):

B(4,5)=Γ(4)Γ(5)Γ(9)=62440320B(4, 5) = \frac{\Gamma(4) \Gamma(5)}{\Gamma(9)} = \frac{6 \cdot 24}{40320}

Simplify:

B(4,5)=14440320=1280B(4, 5) = \frac{144}{40320} = \frac{1}{280}


Step 4: Final Result

Substitute B(4,5)=1280B(4, 5) = \frac{1}{280} into II:

I=12B(4,5)=121280=1560I = \frac{1}{2} B(4, 5) = \frac{1}{2} \cdot \frac{1}{280} = \frac{1}{560}


Final Answer:

0π2sin6xcos8xdx=1560\int_0^{\frac{\pi}{2}} \sin^6{x} \cos^8{x} \, dx = \frac{1}{560}


Do you want a detailed explanation for any step? Let me know!

Here are 5 related questions to deepen your understanding:

  1. How do you derive the Beta function formula from the integral of sin\sin and cos\cos powers?
  2. What is the relationship between the Gamma and factorial functions?
  3. How can the Beta function be extended to other integrals?
  4. Solve 0π2sin4xcos6xdx\int_0^{\frac{\pi}{2}} \sin^4{x} \cos^6{x} \, dx.
  5. What are the properties of the Beta function and its symmetry?

Tip: The Beta function is highly useful in solving integrals of powers of trigonometric functions over [0,π2][0, \frac{\pi}{2}]. It connects directly to the Gamma function for factorial simplifications.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Functions
Beta Function
Gamma Function

Formulas

B(m, n) = 2 ∫₀^π/2 sin^(2m-1)(x)cos^(2n-1)(x)dx
B(m, n) = Γ(m)Γ(n)/Γ(m+n)
Γ(n) = (n-1)!

Theorems

Relationship between Beta and Gamma Functions

Suitable Grade Level

Undergraduate Level (Calculus II or higher)