Math Problem Statement

Transformasi linear T : R^2 → R^3 memiliki fungsi transformasi T(ai) = bi dengan a1 = (2, 1), a2 = (3, 2), b1 = (-1, 2, 2), b2 = (-2, 1, 2). Tentukan basis dan dimensi dari ker(T) dan R(T)!

Solution

The problem involves a linear transformation T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 defined by the mapping of basis vectors a1=[21]\mathbf{a}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} and a2=[32]\mathbf{a}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} in R2\mathbb{R}^2 to b1=[122]\mathbf{b}_1 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} and b2=[212]\mathbf{b}_2 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} in R3\mathbb{R}^3.

The goal is to:

  1. Find a basis and the dimension of the kernel of TT, ker(T)\ker(T).
  2. Find a basis and the dimension of the image of TT, R(T)\operatorname{R}(T).

Solution:

Step 1: Matrix Representation of TT

The transformation TT can be represented by a matrix AR3×2A \in \mathbb{R}^{3 \times 2} such that: T(ai)=Aai.T(\mathbf{a}_i) = A \mathbf{a}_i. Let the columns of AA be b1\mathbf{b}_1 and b2\mathbf{b}_2: A=[122122].A = \begin{bmatrix} -1 & -2 \\ 2 & 1 \\ 2 & 2 \end{bmatrix}.


Step 2: Dimension of R(T)\operatorname{R}(T) and Basis

The rank of AA determines the dimension of R(T)\operatorname{R}(T). Compute the rank of AA: A=[122122].A = \begin{bmatrix} -1 & -2 \\ 2 & 1 \\ 2 & 2 \end{bmatrix}. Perform row reduction:

\xrightarrow{\text{Row 1} \leftrightarrow \text{Row 3}} \begin{bmatrix} 2 & 2 \\ 2 & 1 \\ -1 & -2 \end{bmatrix}.$$ Now, perform $$R_2 \to R_2 - R_1$$ and $$R_3 \to R_3 + \frac{1}{2}R_1$$: $$\begin{bmatrix} 2 & 2 \\ 0 & -1 \\ 0 & -1 \end{bmatrix}.$$ Finally, perform $$R_3 \to R_3 - R_2$$: $$\begin{bmatrix} 2 & 2 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}.$$ The rank of $$A$$ is 2 (there are 2 pivot columns). - **Basis of $$\operatorname{R}(T)$$:** The columns of $$A$$, i.e., $$\mathbf{b}_1$$ and $$\mathbf{b}_2$$, form a basis. - **Dimension of $$\operatorname{R}(T)$$:** $$\dim(\operatorname{R}(T)) = 2$$. --- #### Step 3: Dimension of $$\ker(T)$$ and Basis By the rank-nullity theorem: $$\dim(\ker(T)) + \dim(\operatorname{R}(T)) = \dim(\mathbb{R}^2).$$ Since $$\dim(\operatorname{R}(T)) = 2$$ and $$\dim(\mathbb{R}^2) = 2$$, we find: $$\dim(\ker(T)) = 0.$$ Thus, $$\ker(T)$$ contains only the zero vector. - **Basis of $$\ker(T)$$:** No non-zero basis vectors (trivial kernel). - **Dimension of $$\ker(T)$$:** $$\dim(\ker(T)) = 0$$. --- ### Final Answer: 1. **$$\ker(T)$$:** - Basis: None (trivial kernel). - Dimension: $$0$$. 2. **$$\operatorname{R}(T)$$:** - Basis: $$\{\mathbf{b}_1, \mathbf{b}_2\} = \left\{\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} \right\}$$. - Dimension: $$2$$. Would you like a detailed explanation of any step? Let me know! --- ### Related Questions: 1. What is the geometric interpretation of $$\ker(T)$$ and $$\operatorname{R}(T)$$? 2. How does the rank-nullity theorem relate to the dimensions of $$\ker(T)$$ and $$\operatorname{R}(T)$$? 3. How do we construct the matrix $$A$$ for a linear transformation in general? 4. What happens to $$\ker(T)$$ if $$T$$ is not injective? 5. How can we verify that $$\{\mathbf{b}_1, \mathbf{b}_2\}$$ forms a basis for $$\operatorname{R}(T)$$? ### Tip: Always verify linear independence of the basis vectors when determining $$\operatorname{R}(T)$$.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Linear Transformations
Vector Spaces
Kernel and Image of a Transformation

Formulas

Matrix representation of a linear transformation
Rank-nullity theorem

Theorems

Rank-Nullity Theorem

Suitable Grade Level

Undergraduate - First Year Linear Algebra