Math Problem Statement

Brojevi x, x - 2, y - 2, 2y - x četiri su uzastopna člana aritmetičkog niza. Koji realni brojevi su članovi niza?

Solution

The problem states:

"Brojevi x, x - 2, y - 2, 2y - x četiri su uzastopna člana aritmetičkog niza. Koji realni brojevi su članovi niza?"

Translation: The numbers x,x2,y2,2yxx, x-2, y-2, 2y-x are four consecutive terms of an arithmetic sequence. Find the real numbers that are members of the sequence.


Step-by-step Solution:

In an arithmetic sequence, the difference between consecutive terms is constant. Let dd be the common difference.

From the given terms:

  1. xx
  2. x2x-2
  3. y2y-2
  4. 2yx2y-x

The common difference dd can be expressed between any two consecutive terms:

  1. From the first and second terms: (x2)x=d    d=2(x - 2) - x = d \implies d = -2

  2. From the second and third terms: (y2)(x2)=d(y - 2) - (x - 2) = d Simplify: y2x+2=d    yx=dy - 2 - x + 2 = d \implies y - x = d Since d=2d = -2, we get: yx=2    y=x2y - x = -2 \implies y = x - 2

  3. From the third and fourth terms: (2yx)(y2)=d(2y - x) - (y - 2) = d Substitute y=x2y = x - 2: (2(x2)x)((x2)2)=d(2(x - 2) - x) - ((x - 2) - 2) = d Simplify step-by-step: (2x4x)(x22)=d(2x - 4 - x) - (x - 2 - 2) = d (x4)(x4)=d(x - 4) - (x - 4) = d 0=d0 = d

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Sequences
Algebra
Equations

Formulas

Common difference formula: d = a_(n+1) - a_n
Arithmetic sequence property: a_(n+2) - a_(n+1) = d

Theorems

Arithmetic sequence property

Suitable Grade Level

Grades 9-10