Math Problem Statement

Let w and v be two vectors in R^n with the property that Proj{sub v}w = -3v and Proj{sub w} v = -1/4w . What is the angle (in degrees) between w and v ?

Solution

To determine the angle between w\mathbf{w} and v\mathbf{v}, we use the fact that the projection of one vector onto another is proportional to the cosine of the angle between them. Here's the step-by-step solution:


Step 1: Projections

  1. The projection of w\mathbf{w} onto v\mathbf{v} is given as: Projvw=wvv2v\text{Proj}_{\mathbf{v}} \mathbf{w} = \frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} From the problem, this is equal to 3v-3 \mathbf{v}. Hence: wvv2v=3v.\frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = -3 \mathbf{v}. Cancel v\mathbf{v} (assuming v0\mathbf{v} \neq 0): wvv2=3.\frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} = -3. Therefore: wv=3v2.\mathbf{w} \cdot \mathbf{v} = -3 \|\mathbf{v}\|^2.

  2. Similarly, the projection of v\mathbf{v} onto w\mathbf{w} is given as: Projwv=wvw2w.\text{Proj}_{\mathbf{w}} \mathbf{v} = \frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{w}\|^2} \mathbf{w}. From the problem, this is equal to 14w-\frac{1}{4} \mathbf{w}. Hence: wvw2w=14w.\frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{w}\|^2} \mathbf{w} = -\frac{1}{4} \mathbf{w}. Cancel w\mathbf{w} (assuming w0\mathbf{w} \neq 0): wvw2=14.\frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{w}\|^2} = -\frac{1}{4}. Therefore: wv=14w2.\mathbf{w} \cdot \mathbf{v} = -\frac{1}{4} \|\mathbf{w}\|^2.


Step 2: Equating the Dot Product Expressions

From the two equations for wv\mathbf{w} \cdot \mathbf{v}, we have: 3v2=14w2.-3 \|\mathbf{v}\|^2 = -\frac{1}{4} \|\mathbf{w}\|^2. Eliminate the negative signs: 3v2=14w2.3 \|\mathbf{v}\|^2 = \frac{1}{4} \|\mathbf{w}\|^2. Multiply through by 4: 12v2=w2.12 \|\mathbf{v}\|^2 = \|\mathbf{w}\|^2.


Step 3: Using the Dot Product Formula

The dot product is related to the cosine of the angle θ\theta between the vectors: wv=wvcosθ.\mathbf{w} \cdot \mathbf{v} = \|\mathbf{w}\| \|\mathbf{v}\| \cos \theta. From either projection equation, we know: wv=3v2.\mathbf{w} \cdot \mathbf{v} = -3 \|\mathbf{v}\|^2. Substitute w=12v\|\mathbf{w}\| = \sqrt{12} \|\mathbf{v}\| (from w2=12v2\|\mathbf{w}\|^2 = 12 \|\mathbf{v}\|^2): 3v2=(12v)(v)cosθ.-3 \|\mathbf{v}\|^2 = (\sqrt{12} \|\mathbf{v}\|)(\|\mathbf{v}\|) \cos \theta. Simplify: 3v2=12v2cosθ.-3 \|\mathbf{v}\|^2 = \sqrt{12} \|\mathbf{v}\|^2 \cos \theta. Cancel v2\|\mathbf{v}\|^2 (nonzero): 3=12cosθ.-3 = \sqrt{12} \cos \theta. Solve for cosθ\cos \theta: cosθ=312=323=32.\cos \theta = \frac{-3}{\sqrt{12}} = \frac{-3}{2\sqrt{3}} = -\frac{\sqrt{3}}{2}.


Step 4: Determine the Angle

The cosine value cosθ=32\cos \theta = -\frac{\sqrt{3}}{2} corresponds to an angle: θ=150.\theta = 150^\circ.


Final Answer:

The angle between w\mathbf{w} and v\mathbf{v} is: 150.\boxed{150^\circ}.

Let me know if you would like further details or clarification!


Related Questions:

  1. What is the significance of the projection scalar coefficients in this problem?
  2. How does the dot product relate to projections geometrically?
  3. Can the angle between two vectors ever be greater than 180°?
  4. How would the solution change if the projections were given as positive scalars?
  5. How can this method be applied in three-dimensional vector spaces?

Tip:

Always check the consistency of your derived relationships when working with projections and dot products!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Projections
Dot Product
Cosine of an Angle Between Vectors
Vector Magnitude

Formulas

Proj_{v} w = (w · v / ||v||^2) v
Dot Product: w · v = ||w|| ||v|| cos(θ)
Relationship Between Projection and Angle

Theorems

Projection Theorem
Properties of the Dot Product

Suitable Grade Level

Undergraduate (Linear Algebra)