Math Problem Statement

Solve the following math problems from the image uploaded by the user, which include algebraic expressions, equations, and fractional operations.

Solution

Let me solve each question from the uploaded image:


Question 14

"El enunciado: 'Cuando 8 es sustraído de cuatro veces el número x', se expresa por:"

Mathematically, this translates to: 4x84x - 8 Answer: d) 4x84x - 8


Question 15

"Si a cierto número se le agrega 24, resulta el triple de ese número. ¿Cuál es el número?"

Let the number be xx. The equation is: x+24=3xx + 24 = 3x Simplify: 24=2x    x=1224 = 2x \quad \implies \quad x = 12 Answer: a) 1212


Question 16

"Si al cuadrado de un número se le agregan 9 unidades, resulta el cuadrado del sucesor del número. Entonces el número es:"

Let the number be xx. The equation is: x2+9=(x+1)2x^2 + 9 = (x + 1)^2 Expand (x+1)2(x + 1)^2: x2+9=x2+2x+1x^2 + 9 = x^2 + 2x + 1 Simplify: 9=2x+1    8=2x    x=49 = 2x + 1 \quad \implies \quad 8 = 2x \quad \implies \quad x = 4 Answer: c) 44


Question 17

"Si a un número se le agrega 120, resulta 4 veces el exceso del mismo número sobre 60. ¿Cuál es el número?"

Let the number be xx. The equation is: x+120=4(x60)x + 120 = 4(x - 60) Simplify: x+120=4x240    120+240=4xx    360=3x    x=120x + 120 = 4x - 240 \quad \implies \quad 120 + 240 = 4x - x \quad \implies \quad 360 = 3x \quad \implies \quad x = 120 Answer: e) 120120


Question 18

"La diferencia entre los 56\frac{5}{6} y los 310\frac{3}{10} de un número es 8. ¿Cuál es el número?"

Let the number be xx. The equation is: 56x310x=8\frac{5}{6}x - \frac{3}{10}x = 8 Find a common denominator (LCM of 6 and 10 is 30): 2530x930x=8    1630x=8\frac{25}{30}x - \frac{9}{30}x = 8 \quad \implies \quad \frac{16}{30}x = 8 Simplify: 815x=8    x=15\frac{8}{15}x = 8 \quad \implies \quad x = 15 Answer: d) 1515


Would you like a more detailed explanation of any question? Here are some related questions to deepen your understanding:

  1. What is the importance of translating word problems into mathematical equations?
  2. How do you simplify equations with fractions effectively?
  3. Why is it important to verify solutions in mathematical problems?
  4. What strategies can be used to solve quadratic equations systematically?
  5. How can identifying patterns in problems improve problem-solving efficiency?

Tip: Always double-check your equations, especially when dealing with fractions or exponents, to avoid small errors that might alter the final answer.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Word Problems
Equations with Fractions
Quadratic Equations

Formulas

Basic equation solving: ax + b = c
Simplifying fractions: a/b ± c/d = (ad ± bc)/bd
Quadratic identity: (x + 1)^2 = x^2 + 2x + 1

Theorems

Properties of equality
Quadratic expansion formula

Suitable Grade Level

Grades 7-9