Math Problem Statement

Solution

Let's go through each problem step-by-step.

1. Determine whether each statement is true

i. NV\mathbb{N} \subseteq \mathbb{V} ii. QR\mathbb{Q} \subseteq \mathbb{R} iii. RQ\mathbb{R} \subseteq \mathbb{Q}

Solution:

i. NV\mathbb{N} \subseteq \mathbb{V} (False, assuming V\mathbb{V} denotes the set of vectors) ii. QR\mathbb{Q} \subseteq \mathbb{R} (True) iii. RQ\mathbb{R} \subseteq \mathbb{Q} (False)

2. Express each of the following intervals as an inequality in the variable xx.

i. (4,7)(-4, 7)

Solution:

i. 4<x<7-4 < x < 7

3. Simplify each of the following

i. (1.5,n)(0.3,)(-1.5, n) \cup (0.3, \infty) ii. {x:2<x3}{x:x1 or x2}\{x: -2 < x \leq 3\} \cap \{x: x \neq 1 \text{ or } x \neq 2 \}

Solution:

i. (1.5,n)(0.3,)(-1.5, n) \cup (0.3, \infty) (Assuming nR{}n \in \mathbb{R} \cup \{\infty\}, simplify further if n=n = \infty gives (1.5,)(-1.5, \infty)) ii. 2<x3-2 < x \leq 3, x1x \neq 1, x2x \neq 2

4. Solve the equation (4x+1)2=x+3(4x + 1)^2 = x + 3

Solution:

First, let y=4x+1y = 4x + 1, so the equation becomes: y2=x+3y^2 = x + 3 (4x+1)2=x+3(4x + 1)^2 = x + 3 16x2+8x+1=x+316x^2 + 8x + 1 = x + 3 16x2+7x2=016x^2 + 7x - 2 = 0

Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=7±49+12832x = \frac{-7 \pm \sqrt{49 + 128}}{32} x=7±17732x = \frac{-7 \pm \sqrt{177}}{32}

5. Simplify 5×11x×10x=22×11x5 \times 11^x \times 10^x = 22 \times 11^x

Solution:

5×11x×10x=22×11x5 \times 11^x \times 10^x = 22 \times 11^x 5×10x=225 \times 10^x = 22 10x=22510^x = \frac{22}{5} x=log10(225)x = \log_{10} \left(\frac{22}{5}\right)

6. Simplify the following

i. 273\sqrt[3]{27}

Solution:

273=3\sqrt[3]{27} = 3

7. Given log54=0.561\log_5 4 = 0.561 and log72=0.887\log_7 2 = 0.887, find each of the following:

i. log358\log_{35} 8

Solution:

log358=log108log1035\log_{35} 8 = \frac{\log_{10} 8}{\log_{10} 35} log108=3log1023×0.3010=0.9030\log_{10} 8 = 3 \log_{10} 2 \approx 3 \times 0.3010 = 0.9030 log1035=log105+log1070.6990+0.8451=1.5441\log_{10} 35 = \log_{10} 5 + \log_{10} 7 \approx 0.6990 + 0.8451 = 1.5441 log3580.90301.54410.585\log_{35} 8 \approx \frac{0.9030}{1.5441} \approx 0.585

8. Simplify 2+log382 + \log_3 8

Solution:

2+log38=2+log108log1032 + \log_3 8 = 2 + \frac{\log_{10} 8}{\log_{10} 3} log1080.9030\log_{10} 8 \approx 0.9030 log1030.4771\log_{10} 3 \approx 0.4771 2+0.90300.47712+1.8933.8932 + \frac{0.9030}{0.4771} \approx 2 + 1.893 \approx 3.893

9. Simplify log4(32)log4(2)\log_4 (32) - \log_4 (2)

Solution:

log4(32)log4(2)=log4(322)=log4(16)\log_4 (32) - \log_4 (2) = \log_4 \left( \frac{32}{2} \right) = \log_4 (16) log4(16)=2\log_4 (16) = 2

10. Solve for uu and vv such that (m6u+1)(v1)=11+2(m - 6u + 1)(v - 1) = 11 + 2

Solution:

(m6u+1)(v1)=13(m - 6u + 1)(v - 1) = 13

Since there are multiple variables, more information or another equation is needed to uniquely determine uu and vv.

If you have any questions or need further details, feel free to ask!

Here are 8 related questions for practice:

  1. Determine if ZQ\mathbb{Z} \subseteq \mathbb{Q}.
  2. Express the interval [2,5)[2, 5) as an inequality.
  3. Simplify the union (2,4)(3,7)(-2, 4) \cup (3, 7).
  4. Solve the equation x24x5=0x^2 - 4x - 5 = 0.
  5. Simplify 2×3x=62 \times 3^x = 6.
  6. Simplify 164\sqrt[4]{16}.
  7. Given log25=2.3219\log_2 5 = 2.3219, find log225\log_2 25.
  8. Simplify 3+log293 + \log_2 9.

Tip: Always check the domain of the function while solving logarithmic and exponential equations to avoid undefined values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set theory
Inequalities
Equations
Logarithms
Exponentials

Formulas

Quadratic formula
Logarithmic identities

Theorems

-

Suitable Grade Level

Advanced High School and Above