Math Problem Statement
Исследовать на абсолютную и условную сходимость знакочередующийся ряд ∑(n=1)^∞▒〖〖(-1)〗^n*u_n 〗 ∑(n=1)^∞▒(〖(-1)〗^(n+1)*3^n)/〖(2n+1)〗^n
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Series Convergence
Alternating Series
Absolute and Conditional Convergence
Formulas
Criterion for absolute convergence: ∑|a_n|
Ratio test (D'Alembert's criterion): L = lim (n→∞) |a_(n+1)/a_n|
Alternating series general form: ∑(-1)^n * u_n
Theorems
Ratio Test (D'Alembert's Criterion)
Leibniz Test for Alternating Series
Suitable Grade Level
Undergraduate Mathematics (Calculus)
Related Recommendation
Convergence Analysis of Alternating Series with Ratio Test
Find the Interval of Convergence for \(\sum_{n=1}^\infty \frac{(3x-1)^n}{n^3 + n}\)
Determine Series Convergence using Ratio Test with Factorials and Powers
Series Convergence Test: 1/(n+1) * 3^n
Discuss the Convergence of the Series ∑((-1)^(n-1) * n^5 / (n + 1))