Math Problem Statement

Use bar notation to write repeating decimals in a compact form for the following numbers: 1) 3.999... 2) 2.212121... 3) 0.363636... 4) 4.343434... 5) 0.580580... 6) 6.1343434... 7) 0.62313131... 8) 0.123123123... 9) -1.2333... 10) -3.24545... 11) -1.525252... 12) -1.020202... 13) -6.676767... 14) -23.0232323... 15) -5.0212121... 16) -0.01919...

Solution

This exercise involves writing repeating decimals in a compact form using bar notation to denote repeating digits.

Let’s rewrite the numbers using bar notation:

  1. 3.93.\overline{9}
  2. 2.212.\overline{21}
  3. 0.360.\overline{36}
  4. 4.344.\overline{34}
  5. 0.5800.\overline{580}
  6. 6.134346.\overline{13434}
  7. 0.6231310.\overline{623131}
  8. 0.1231230.\overline{123123}
  9. 1.2333-1.\overline{2333}
  10. 3.24545-3.\overline{24545}
  11. 1.525252-1.\overline{525252}
  12. 1.020202-1.\overline{020202}
  13. 6.676767-6.\overline{676767}
  14. 23.0232323-23.\overline{0232323}
  15. 5.02121-5.\overline{02121}
  16. 0.01919-0.\overline{01919}

Here:

  • The digits under the bar (e.g., 36\overline{36}) represent the repeating section.
  • The repeating block of digits may vary in length.

Do you want me to explain how to convert repeating decimals to fractions or provide further details?

Here are 5 follow-up questions to expand on the topic:

  1. How do you convert 0.30.\overline{3} into a fraction?
  2. What is the process for turning repeating decimals into mixed numbers?
  3. Can you explain how to identify the repeating sequence in a decimal?
  4. How do repeating decimals appear when expressed as fractions?
  5. Why do some decimals terminate while others repeat?

Tip: For x=0.36x = 0.\overline{36}, you can multiply xx by a power of 10 to "shift" the repeating part, helping to solve for xx as a fraction.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Repeating Decimals
Bar Notation
Decimal Representation

Formulas

Bar notation represents repeating decimals compactly with a bar over the repeating section.

Theorems

Decimals with repeating sequences can be represented with a finite pattern under bar notation.

Suitable Grade Level

Grades 6-8