Math Problem Statement

جسمی به جرم ۲ کیلوگرم در حال حرکت است گر انرژی جنبشی آن ۱۰۰ ژول باشد هنگامی که تندی جسم به ۲۰ متر بر ثانیه می‌رسد کار کل انجام شده روی جسم چقدر است

Solution

برای پاسخ به این مسئله، ابتدا باید مفهوم انرژی جنبشی و کار کل را درک کنیم. انرژی جنبشی یک جسم با فرمول زیر محاسبه می‌شود:

K=12mv2K = \frac{1}{2} m v^2

که در آن:
KK: انرژی جنبشی (ژول)
mm: جرم جسم (کیلوگرم)
vv: تندی جسم (متر بر ثانیه)

مرحله اول: محاسبه سرعت اولیه جسم

از فرمول انرژی جنبشی استفاده می‌کنیم تا سرعت اولیه جسم را پیدا کنیم:

K=12mv2    v=2KmK = \frac{1}{2} m v^2 \implies v = \sqrt{\frac{2K}{m}}

با جایگذاری K=100JK = 100 \, \text{J} و m=2kgm = 2 \, \text{kg}:

v=2×1002=100=10m/sv = \sqrt{\frac{2 \times 100}{2}} = \sqrt{100} = 10 \, \text{m/s}

پس تندی اولیه جسم v1=10m/sv_1 = 10 \, \text{m/s} است.

مرحله دوم: انرژی جنبشی نهایی جسم

وقتی تندی به v2=20m/sv_2 = 20 \, \text{m/s} برسد، انرژی جنبشی جدید جسم را محاسبه می‌کنیم:

K2=12mv22K_2 = \frac{1}{2} m v_2^2

جایگذاری مقادیر:

K2=12×2×(20)2=1×400=400JK_2 = \frac{1}{2} \times 2 \times (20)^2 = 1 \times 400 = 400 \, \text{J}

مرحله سوم: محاسبه کار کل

کار کل انجام شده روی جسم برابر است با تغییر انرژی جنبشی:

W=K2K1W = K_2 - K_1

جایگذاری مقادیر:

W=400100=300JW = 400 - 100 = 300 \, \text{J}

پاسخ نهایی:

کار کل انجام شده روی جسم برابر است با 300 ژول.


آیا نیاز به توضیحات بیشتری دارید؟

در ادامه چند سوال مرتبط با این موضوع برای شما آورده شده است:

  1. چرا تغییر انرژی جنبشی معادل با کار کل انجام شده است؟
  2. چگونه می‌توان کار انجام شده توسط نیروی خاصی را محاسبه کرد؟
  3. اگر جرم جسم تغییر کند، تأثیر آن بر کار کل چیست؟
  4. مفهوم انرژی پتانسیل در این مسئله چگونه قابل بررسی است؟
  5. اگر جسم اصطکاک داشته باشد، چگونه تحلیل تغییر می‌کند؟

یک نکته:

کار (Work) همیشه به جهت نیرو و حرکت جسم بستگی دارد. اگر نیرو در جهت حرکت باشد، کار مثبت است.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Kinetic Energy
Work-Energy Theorem
Basic Physics of Motion

Formulas

K = 1/2 * m * v^2
W = K2 - K1

Theorems

Work-Energy Theorem

Suitable Grade Level

Grades 9-12