Math Problem Statement

The lifetime X (in hundreds of hours) of a certain type of vacuum tube has a Weibull distribution with parameters 𝛼 = 2 and 𝛽 = 3.† Compute the following. (Round your answers to three decimal places.) (a)
E(X) and V(X) E(X) = V(X) =

(b)
P(X ≤ 4)

(c)
P(2.5 ≤ X ≤ 4)

Solution

To solve this, we need to use properties of the Weibull distribution with parameters α\alpha (shape) and β\beta (scale). Given that:

  • XWeibull(α=2,β=3)X \sim \text{Weibull}(\alpha = 2, \beta = 3),
  • XX represents the lifetime in hundreds of hours.

Part (a): E(X)E(X) and V(X)V(X)

For a Weibull distributed random variable XWeibull(α,β)X \sim \text{Weibull}(\alpha, \beta):

  1. Expected Value E(X)E(X): E(X)=βΓ(1+1α)E(X) = \beta \cdot \Gamma \left(1 + \frac{1}{\alpha}\right)

  2. Variance V(X)V(X): V(X)=β2[Γ(1+2α)(Γ(1+1α))2]V(X) = \beta^2 \cdot \left[ \Gamma \left(1 + \frac{2}{\alpha}\right) - \left( \Gamma \left(1 + \frac{1}{\alpha}\right) \right)^2 \right]

Where Γ()\Gamma(\cdot) is the Gamma function.

Plugging in α=2\alpha = 2 and β=3\beta = 3:

Calculations:

  1. E(X)=3Γ(1+12)E(X) = 3 \cdot \Gamma \left(1 + \frac{1}{2}\right).

    • Γ(1+12)=Γ(32)0.886\Gamma\left(1 + \frac{1}{2}\right) = \Gamma\left(\frac{3}{2}\right) \approx 0.886.
    • So, E(X)30.886=2.658E(X) \approx 3 \cdot 0.886 = 2.658.
  2. V(X)=32[Γ(1+22)(Γ(1+12))2]V(X) = 3^2 \cdot \left[ \Gamma\left(1 + \frac{2}{2}\right) - \left( \Gamma\left(1 + \frac{1}{2}\right) \right)^2 \right].

    • Γ(1+22)=Γ(2)=1\Gamma\left(1 + \frac{2}{2}\right) = \Gamma(2) = 1.
    • Thus, V(X)9(1(0.886)2)9(10.785)=90.215=1.935V(X) \approx 9 \cdot (1 - (0.886)^2) \approx 9 \cdot (1 - 0.785) = 9 \cdot 0.215 = 1.935.

Answers:

  • E(X)2.658E(X) \approx 2.658
  • V(X)1.935V(X) \approx 1.935

Part (b): P(X4)P(X \leq 4)

For a Weibull distributed random variable, the cumulative distribution function (CDF) is: P(Xx)=1e(x/β)αP(X \leq x) = 1 - e^{-(x / \beta)^\alpha}

To find P(X4)P(X \leq 4), set x=4x = 4, α=2\alpha = 2, and β=3\beta = 3:

P(X4)=1e(4/3)2P(X \leq 4) = 1 - e^{-(4 / 3)^2}

Calculating:

  1. (4/3)2=1.778(4 / 3)^2 = 1.778.
  2. e1.7780.169e^{-1.778} \approx 0.169.
  3. So, P(X4)10.169=0.831P(X \leq 4) \approx 1 - 0.169 = 0.831.

Answer:

  • P(X4)0.831P(X \leq 4) \approx 0.831

Part (c): P(2.5X4)P(2.5 \leq X \leq 4)

This is calculated by finding P(X4)P(X \leq 4) and P(X2.5)P(X \leq 2.5), then taking the difference.

  1. We already know P(X4)0.831P(X \leq 4) \approx 0.831.

  2. For P(X2.5)P(X \leq 2.5): P(X2.5)=1e(2.5/3)2P(X \leq 2.5) = 1 - e^{-(2.5 / 3)^2}

    Calculating:

    • (2.5/3)2=0.694(2.5 / 3)^2 = 0.694.
    • e0.6940.500e^{-0.694} \approx 0.500.
    • So, P(X2.5)10.500=0.500P(X \leq 2.5) \approx 1 - 0.500 = 0.500.
  3. Now, P(2.5X4)=P(X4)P(X2.5)0.8310.500=0.331P(2.5 \leq X \leq 4) = P(X \leq 4) - P(X \leq 2.5) \approx 0.831 - 0.500 = 0.331.

Answer:

  • P(2.5X4)0.331P(2.5 \leq X \leq 4) \approx 0.331

Summary:

  • (a) E(X)2.658E(X) \approx 2.658, V(X)1.935V(X) \approx 1.935
  • (b) P(X4)0.831P(X \leq 4) \approx 0.831
  • (c) P(2.5X4)0.331P(2.5 \leq X \leq 4) \approx 0.331

Would you like further details on any of these steps?


Related Questions:

  1. How does changing α\alpha affect the shape of the Weibull distribution?
  2. How would E(X)E(X) and V(X)V(X) change if β\beta were different?
  3. How is the Weibull distribution used in reliability analysis?
  4. What would P(X>4)P(X > 4) be in this scenario?
  5. Can the Gamma function be approximated differently for better accuracy?

Tip:

The Weibull distribution is often used for modeling lifetimes, where different values of α\alpha and β\beta can indicate various failure rates.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability
Weibull Distribution
Expected Value
Variance
Cumulative Distribution Function

Formulas

E(X) = β * Γ(1 + 1/α)
V(X) = β^2 * (Γ(1 + 2/α) - (Γ(1 + 1/α))^2)
P(X ≤ x) = 1 - e^{-(x / β)^α}

Theorems

Gamma Function
Weibull Distribution Properties

Suitable Grade Level

Undergraduate Level - Probability and Statistics