Math Problem Statement

Случайная величина X имеет распределение Вейбулла с параметрами α = 2, λ = 5 (распределение Рэлея), а случайная величина Y = X^2. Найти математическое ожидание случайной величины Y.

Solution

This is a problem involving the Weibull distribution and calculating the expected value of a transformed random variable. Here's the breakdown:


Problem Statement:

The random variable XX follows the Weibull distribution with parameters α=2\alpha = 2 and λ=5\lambda = 5 (a special case known as the Rayleigh distribution). Another random variable YY is defined as Y=X2Y = X^2. The goal is to find the mathematical expectation E[Y]\mathbb{E}[Y], which is the expected value of YY.


Step-by-Step Solution:

  1. Probability Density Function (PDF) of XX: For a Weibull distribution with shape α\alpha and scale λ\lambda, the PDF is: fX(x)=αλαxα1e(x/λ)α,x0f_X(x) = \frac{\alpha}{\lambda^\alpha} x^{\alpha - 1} e^{-(x/\lambda)^\alpha}, \quad x \geq 0 Substituting α=2\alpha = 2 and λ=5\lambda = 5: fX(x)=252x21e(x/5)2=225xe(x2/25),x0f_X(x) = \frac{2}{5^2} x^{2-1} e^{-(x/5)^2} = \frac{2}{25} x e^{-(x^2/25)}, \quad x \geq 0

  2. Relation Between XX and YY: Since Y=X2Y = X^2, the transformation is: Y=X2    X=Y,x0    y0Y = X^2 \implies X = \sqrt{Y}, \quad x \geq 0 \implies y \geq 0

  3. Expected Value of YY: By definition: E[Y]=0yfY(y)dy\mathbb{E}[Y] = \int_0^\infty y f_Y(y) \, dy However, it’s easier to compute E[Y]\mathbb{E}[Y] using the transformation and the known PDF of XX: [ \mathbb{E}[Y] = \mathbb{E}[X^2] = \int_0^\infty x^2 f_X(x) , dx ]

  4. Substitute fX(x)f_X(x): Using the PDF fX(x)=225xe(x2/25)f_X(x) = \frac{2}{25} x e^{-(x^2/25)}: E[Y]=0x2225xe(x2/25)dx=2250x3e(x2/25)dx\mathbb{E}[Y] = \int_0^\infty x^2 \cdot \frac{2}{25} x e^{-(x^2/25)} \, dx = \frac{2}{25} \int_0^\infty x^3 e^{-(x^2/25)} \, dx

  5. Simplify the Integral: Let u=x225u = \frac{x^2}{25}, so x2=25ux^2 = 25u and dx=25225udu=5ududx = \frac{25}{2\sqrt{25u}} \, du = \frac{5}{\sqrt{u}} \, du: E[Y]=2250(25u)5eudu=2251250ueudu\mathbb{E}[Y] = \frac{2}{25} \int_0^\infty (25u) \cdot 5 \cdot e^{-u} \, du = \frac{2}{25} \cdot 125 \int_0^\infty u e^{-u} \, du

  6. Evaluate the Gamma Function: The integral 0ueudu\int_0^\infty u e^{-u} \, du is a standard gamma function Γ(2)\Gamma(2), where Γ(n)=(n1)!\Gamma(n) = (n-1)! for integer nn. Here: Γ(2)=1!=1\Gamma(2) = 1! = 1 Thus: E[Y]=2251251=10\mathbb{E}[Y] = \frac{2}{25} \cdot 125 \cdot 1 = 10


Final Answer:

The expected value of YY is: E[Y]=10\mathbb{E}[Y] = 10


Would you like a deeper explanation of any step or help with related problems? Here are five follow-up questions to expand your understanding:

  1. What is the general formula for transforming expectations when Y=g(X)Y = g(X)?
  2. How does the Weibull distribution generalize to other distributions (e.g., Rayleigh)?
  3. What is the role of the gamma function in expectation calculations for Weibull-distributed variables?
  4. How can this result be verified using numerical integration or simulation?
  5. What are the applications of the Weibull and Rayleigh distributions in real-world contexts?

Tip: When working with transformed random variables, always check if the transformation simplifies the problem (e.g., directly relating moments like E[X2]\mathbb{E}[X^2]).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Weibull Distribution
Expectation of a Transformed Variable

Formulas

Weibull PDF: f_X(x) = (α/λ^α) * x^(α-1) * e^(-(x/λ)^α)
Transformation: Y = g(X), E[Y] = E[g(X)]
Gamma Function: Γ(n) = (n-1)!

Theorems

Moment Transformation Theorem
Gamma Function Properties

Suitable Grade Level

Undergraduate Level (Probability and Statistics)