Math Problem Statement

Identify the histogram for the frequency distribution below.

Bin Frequency

[2, 7) 2

[7, 12) 5

[12, 17) 4

[17, 22) 3

[22, 27) 1

Solution

To create a histogram based on the given frequency distribution, we can visualize the bars corresponding to each bin's frequency. Here's how the histogram will look:

Bins and Frequencies:

  1. [2, 7) → Frequency: 2
  2. [7, 12) → Frequency: 5
  3. [12, 17) → Frequency: 4
  4. [17, 22) → Frequency: 3
  5. [22, 27) → Frequency: 1

Steps to Draw the Histogram:

  • X-axis: Represents the bins (ranges of data).
  • Y-axis: Represents the frequency.
  1. Bin [2, 7): Draw a bar extending from 2 to 7 on the x-axis with a height of 2.
  2. Bin [7, 12): Draw a bar from 7 to 12 with a height of 5.
  3. Bin [12, 17): Draw a bar from 12 to 17 with a height of 4.
  4. Bin [17, 22): Draw a bar from 17 to 22 with a height of 3.
  5. Bin [22, 27): Draw a bar from 22 to 27 with a height of 1.

Histogram Structure:

  • The first bar spans from 2 to 7 with a height of 2.
  • The second bar spans from 7 to 12 with a height of 5.
  • The third bar spans from 12 to 17 with a height of 4.
  • The fourth bar spans from 17 to 22 with a height of 3.
  • The fifth bar spans from 22 to 27 with a height of 1.

If you would like a visual representation of this histogram, feel free to upload an image or ask for further clarification.

Do you want more details or have any questions?

Here are 5 related questions you could explore:

  1. How would the histogram change if the data points shifted to the right by 2 units?
  2. What is the cumulative frequency of the first three bins?
  3. How does the shape of this histogram inform us about the distribution of data?
  4. If the frequency in the last bin doubled, how would that affect the histogram?
  5. How can we use this histogram to identify the median?

Tip: When interpreting histograms, look for the shape (e.g., skewed or symmetrical) to understand the data distribution better.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Histogram
Frequency Distribution
Data Visualization

Formulas

-

Theorems

-

Suitable Grade Level

Grades 9-12