Math Problem Statement

verify if T:E^2E2\rarr E^2 DEFINed by T[(x1,x2)]=(x1+x2,x1-x2+1) is linear transformation or not

Solution

To determine if the transformation T:E2E2T: \mathbb{E}^2 \rightarrow \mathbb{E}^2 defined by T[(x1,x2)]=(x1+x2,x1x2+1)T[(x_1, x_2)] = (x_1 + x_2, x_1 - x_2 + 1) is a linear transformation, we need to verify if it satisfies the two conditions of linearity:

  1. Additivity: T(v1+v2)=T(v1)+T(v2)T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2) for any vectors v1\mathbf{v}_1 and v2\mathbf{v}_2.
  2. Homogeneity (Scalar Multiplication): T(cv)=cT(v)T(c\mathbf{v}) = cT(\mathbf{v}) for any vector v\mathbf{v} and scalar cc.

Let v1=(x1,x2)\mathbf{v}_1 = (x_1, x_2) and v2=(y1,y2)\mathbf{v}_2 = (y_1, y_2). Then:

  1. Check Additivity:

    Consider T(v1+v2)T(\mathbf{v}_1 + \mathbf{v}_2). We have: v1+v2=(x1+y1,x2+y2)\mathbf{v}_1 + \mathbf{v}_2 = (x_1 + y_1, x_2 + y_2) So, T(v1+v2)=((x1+y1)+(x2+y2),(x1+y1)(x2+y2)+1)T(\mathbf{v}_1 + \mathbf{v}_2) = \left( (x_1 + y_1) + (x_2 + y_2), (x_1 + y_1) - (x_2 + y_2) + 1 \right) Simplifying: T(v1+v2)=(x1+x2+y1+y2,x1x2+y1y2+1)T(\mathbf{v}_1 + \mathbf{v}_2) = \left( x_1 + x_2 + y_1 + y_2, x_1 - x_2 + y_1 - y_2 + 1 \right)

    Now, calculate T(v1)+T(v2)T(\mathbf{v}_1) + T(\mathbf{v}_2). We have: T(v1)=(x1+x2,x1x2+1)T(\mathbf{v}_1) = (x_1 + x_2, x_1 - x_2 + 1) T(v2)=(y1+y2,y1y2+1)T(\mathbf{v}_2) = (y_1 + y_2, y_1 - y_2 + 1) Adding these: T(v1)+T(v2)=((x1+x2)+(y1+y2),(x1x2+1)+(y1y2+1))T(\mathbf{v}_1) + T(\mathbf{v}_2) = \left( (x_1 + x_2) + (y_1 + y_2), (x_1 - x_2 + 1) + (y_1 - y_2 + 1) \right) Simplifying: T(v1)+T(v2)=(x1+x2+y1+y2,x1x2+y1y2+2)T(\mathbf{v}_1) + T(\mathbf{v}_2) = \left( x_1 + x_2 + y_1 + y_2, x_1 - x_2 + y_1 - y_2 + 2 \right)

    Since T(v1+v2)T(v1)+T(v2)T(\mathbf{v}_1 + \mathbf{v}_2) \neq T(\mathbf{v}_1) + T(\mathbf{v}_2), the additivity condition fails. Therefore, TT is not a linear transformation.

  2. Since the additivity condition fails, we do not need to check homogeneity. TT is not linear.

Would you like more details, or do you have any questions?

Here are some related questions:

  1. What are examples of linear transformations in 2D space?
  2. How do you check if a matrix represents a linear transformation?
  3. Can a transformation be partially linear (e.g., linear in one variable)?
  4. What is the geometric interpretation of a linear transformation?
  5. How do linear transformations relate to vector spaces?

Tip: A linear transformation must preserve both vector addition and scalar multiplication; failing either condition makes the transformation non-linear.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformation
Vector Spaces

Formulas

-

Theorems

-

Suitable Grade Level

Advanced College Level