Math Problem Statement

Find the velocity and acceleration functions of a particle with position function s(t) = t / (1 + t^2), and determine intervals where the particle is speeding up or slowing down.

Solution

Let's solve this step by step.

Given:

The position function of a particle is: s(t)=t1+t2.s(t) = \frac{t}{1 + t^2}.


Part (a): Find v(t)v(t) and a(t)a(t)

  1. Velocity (v(t)v(t)): The velocity is the derivative of the position function: v(t)=ds(t)dt.v(t) = \frac{ds(t)}{dt}. Using the quotient rule: ddt(t1+t2)=(1+t2)(1)t(2t)(1+t2)2.\frac{d}{dt} \left( \frac{t}{1 + t^2} \right) = \frac{(1 + t^2)(1) - t(2t)}{(1 + t^2)^2}. Simplify: v(t)=1+t22t2(1+t2)2=1t2(1+t2)2.v(t) = \frac{1 + t^2 - 2t^2}{(1 + t^2)^2} = \frac{1 - t^2}{(1 + t^2)^2}.

    So, v(t)=1t2(1+t2)2.v(t) = \frac{1 - t^2}{(1 + t^2)^2}.

  2. Acceleration (a(t)a(t)): The acceleration is the derivative of the velocity: a(t)=dv(t)dt.a(t) = \frac{dv(t)}{dt}. Using the quotient rule again: ddt(1t2(1+t2)2)=(1+t2)2(2t)(1t2)2(1+t2)(2t)(1+t2)4.\frac{d}{dt} \left( \frac{1 - t^2}{(1 + t^2)^2} \right) = \frac{(1 + t^2)^2 \cdot (-2t) - (1 - t^2) \cdot 2(1 + t^2)(2t)}{(1 + t^2)^4}. Simplify the numerator step-by-step: Numerator=2t(1+t2)22t(1t2)(2)(1+t2).\text{Numerator} = -2t(1 + t^2)^2 - 2t(1 - t^2)(2)(1 + t^2). Factor out 2t(1+t2)-2t(1 + t^2): Numerator=2t(1+t2)[(1+t2)+2(1t2)].\text{Numerator} = -2t(1 + t^2)\left[(1 + t^2) + 2(1 - t^2)\right]. Simplify the bracket: (1+t2)+2(1t2)=1+t2+22t2=3t2.(1 + t^2) + 2(1 - t^2) = 1 + t^2 + 2 - 2t^2 = 3 - t^2. So: Numerator=2t(1+t2)(3t2).\text{Numerator} = -2t(1 + t^2)(3 - t^2). The acceleration becomes: a(t)=2t(1+t2)(3t2)(1+t2)4.a(t) = \frac{-2t(1 + t^2)(3 - t^2)}{(1 + t^2)^4}. Cancel one (1+t2)(1 + t^2): a(t)=2t(3t2)(1+t2)3.a(t) = \frac{-2t(3 - t^2)}{(1 + t^2)^3}.


Part (b): Determine intervals where the object is slowing down or speeding up

  • The particle is:
    • Speeding up when v(t)v(t) and a(t)a(t) have the same sign.
    • Slowing down when v(t)v(t) and a(t)a(t) have opposite signs.

Analyze v(t)v(t):

v(t)=1t2(1+t2)2.v(t) = \frac{1 - t^2}{(1 + t^2)^2}.

  • v(t)>0v(t) > 0 when 1t2>0    t(0,1)1 - t^2 > 0 \implies t \in (0, 1).
  • v(t)<0v(t) < 0 when 1t2<0    t(1,)1 - t^2 < 0 \implies t \in (1, \infty).

Analyze a(t)a(t):

a(t)=2t(3t2)(1+t2)3.a(t) = \frac{-2t(3 - t^2)}{(1 + t^2)^3}.

  • a(t)>0a(t) > 0 when:
    • 2t<0-2t < 0 (so t>0t > 0) and 3t2>0    t(0,3)3 - t^2 > 0 \implies t \in (0, \sqrt{3}).
  • a(t)<0a(t) < 0 when:
    • 2t<0-2t < 0 (so t>0t > 0) and 3t2<0    t(3,)3 - t^2 < 0 \implies t \in (\sqrt{3}, \infty).

Combine signs of v(t)v(t) and a(t)a(t):

  1. Speeding up (v(t)v(t) and a(t)a(t) have the same sign):

    • t(0,1)t \in (0, 1) (both v(t)>0v(t) > 0 and a(t)>0a(t) > 0).
    • t(3,)t \in (\sqrt{3}, \infty) (both v(t)<0v(t) < 0 and a(t)<0a(t) < 0).
  2. Slowing down (v(t)v(t) and a(t)a(t) have opposite signs):

    • t(1,3)t \in (1, \sqrt{3}) (v(t)<0v(t) < 0, a(t)>0a(t) > 0).

Final Answers:

(a)
v(t)=1t2(1+t2)2,a(t)=2t(3t2)(1+t2)3.v(t) = \frac{1 - t^2}{(1 + t^2)^2}, \quad a(t) = \frac{-2t(3 - t^2)}{(1 + t^2)^3}.

(b)

  • Slowing down: t(1,3)t \in (1, \sqrt{3}).
  • Speeding up: t(0,1)(3,)t \in (0, 1) \cup (\sqrt{3}, \infty).

Would you like a deeper explanation of any part?

Here are 5 related questions you could explore:

  1. How does the quotient rule apply to more complex functions?
  2. Why do we check the signs of velocity and acceleration for speeding up/slowing down?
  3. How do inflection points of s(t)s(t) relate to acceleration?
  4. What happens when t=1t = 1 or t=3t = \sqrt{3}?
  5. Can this method be extended to 2D or 3D motion?

Tip: Always double-check the domains of your functions to ensure intervals make physical sense.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Velocity
Acceleration
Quotient Rule
Sign Analysis

Formulas

v(t) = ds(t)/dt
a(t) = dv(t)/dt
Quotient Rule: d/dx [f(x)/g(x)] = (g(x)f'(x) - f(x)g'(x)) / g(x)^2

Theorems

Quotient Rule of Derivatives

Suitable Grade Level

Grades 11-12