Math Problem Statement

OACB is a quadrilateral. APB and OPC are straight lines. Given: OA = 3a, OB = 6b, BC = 5a - b, OP:PC = 2:3. Work out the ratio AP:PB. You must show all your working.

Solution

To solve the problem and determine the ratio AP:PBAP : PB, let's go through the given information step by step.

Step 1: Define vectors

From the question, we have:

  1. OA=3a\vec{OA} = 3a
  2. OB=6b\vec{OB} = 6b
  3. BC=5ab\vec{BC} = 5a - b
  4. The ratio OP:PC=2:3\text{The ratio } OP:PC = 2:3

Let PP divide OCOC in the ratio 2:32:3, and express OP\vec{OP} and PC\vec{PC} accordingly.

Step 2: Express OC\vec{OC}

From the diagram: OC=OA+AC\vec{OC} = \vec{OA} + \vec{AC} Since AC=AB+BC\vec{AC} = \vec{AB} + \vec{BC}, we substitute: OC=OA+(AB+BC)\vec{OC} = \vec{OA} + (\vec{AB} + \vec{BC}) From the question:

  • OA=3a\vec{OA} = 3a
  • AB=OBOA=6b3a\vec{AB} = \vec{OB} - \vec{OA} = 6b - 3a
  • BC=5ab\vec{BC} = 5a - b

Substitute these values: AC=(6b3a)+(5ab)=6b3a+5ab=4b+2a\vec{AC} = (6b - 3a) + (5a - b) = 6b - 3a + 5a - b = 4b + 2a Thus: OC=OA+AC=3a+(4b+2a)=5a+4b\vec{OC} = \vec{OA} + \vec{AC} = 3a + (4b + 2a) = 5a + 4b

Step 3: Divide OC\vec{OC} in the ratio 2:32:3

Since OP:PC=2:3OP:PC = 2:3, the point PP divides OC\vec{OC} in this ratio. Using the section formula: OP=35OC,PC=25OC\vec{OP} = \frac{3}{5} \vec{OC}, \quad \vec{PC} = \frac{2}{5} \vec{OC} Substitute OC=5a+4b\vec{OC} = 5a + 4b: OP=35(5a+4b)=3a+125b\vec{OP} = \frac{3}{5}(5a + 4b) = 3a + \frac{12}{5}b PC=25(5a+4b)=2a+85b\vec{PC} = \frac{2}{5}(5a + 4b) = 2a + \frac{8}{5}b

Step 4: Express AP\vec{AP} and PB\vec{PB}

Now calculate AP\vec{AP} and PB\vec{PB}:

  • AP=OPOA\vec{AP} = \vec{OP} - \vec{OA}
  • PB=OBOP\vec{PB} = \vec{OB} - \vec{OP}

Substitute the known values:

  1. AP=(3a+125b)3a=125b\vec{AP} = (3a + \frac{12}{5}b) - 3a = \frac{12}{5}b
  2. PB=6b(3a+125b)=3a+(6b125b)=3a+185b\vec{PB} = 6b - (3a + \frac{12}{5}b) = -3a + (6b - \frac{12}{5}b) = -3a + \frac{18}{5}b

Step 5: Find the ratio AP:PBAP : PB

The magnitude of AP\vec{AP} is: AP=125b=125b|\vec{AP}| = \left| \frac{12}{5}b \right| = \frac{12}{5}|b|

The magnitude of PB\vec{PB} is: PB=(3a)2+(185b)2=9a2+32425b2=9a2+129625b2|\vec{PB}| = \sqrt{(-3a)^2 + \left(\frac{18}{5}b\right)^2} = \sqrt{9a^2 + \frac{324}{25}b^2} = \sqrt{9a^2 + \frac{1296}{25}b^2}

Thus: AP:PB=APPB=125b9a2+129625b2AP : PB = \frac{|\vec{AP}|}{|\vec{PB}|} = \frac{\frac{12}{5}|b|}{\sqrt{9a^2 + \frac{1296}{25}b^2}}

Simplify further if needed based on aa and bb. Let me know if you'd like assistance continuing from here!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Ratios and Proportions
Section Formula
Vector Magnitude

Formulas

Section formula for dividing a line in a ratio
Magnitude of a vector: |v| = sqrt(vx^2 + vy^2)

Theorems

Section formula theorem for vector division

Suitable Grade Level

Grades 11-12