Math Problem Statement

Given two displacement vectors, A = (3i - 4j + 4k) m and B = (2i + 3j - 7k) m, calculate the displacement and their magnitude for (a) C = A + B and (b) D = 2A - B.

Solution

The question asks about two displacement vectors, A and B, and their resultant vectors C and D. Here's the breakdown:

  • Given Vectors:

    • A = (3𝑖 - 4𝑗 + 4π‘˜) m
    • B = (2𝑖 + 3𝑗 - 7π‘˜) m
  • Tasks:

    • (a) Calculate C = A + B and its magnitude.
    • (b) Calculate D = 2A - B and its magnitude.

(a) C = A + B

  1. Add the components of A and B: C=(3+2)i+(βˆ’4+3)j+(4βˆ’7)k\mathbf{C} = (3 + 2)\mathbf{i} + (-4 + 3)\mathbf{j} + (4 - 7)\mathbf{k} C=5iβˆ’jβˆ’3k\mathbf{C} = 5\mathbf{i} - \mathbf{j} - 3\mathbf{k}

  2. Magnitude of C: ∣C∣=(5)2+(βˆ’1)2+(βˆ’3)2|\mathbf{C}| = \sqrt{(5)^2 + (-1)^2 + (-3)^2} ∣C∣=25+1+9=35β‰ˆ5.92 m.|\mathbf{C}| = \sqrt{25 + 1 + 9} = \sqrt{35} \approx 5.92 \, \text{m}.


(b) D = 2A - B

  1. First calculate 2A: 2A=2(3iβˆ’4j+4k)=6iβˆ’8j+8k.2\mathbf{A} = 2(3\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) = 6\mathbf{i} - 8\mathbf{j} + 8\mathbf{k}.

  2. Subtract B: D=(6βˆ’2)i+(βˆ’8βˆ’3)j+(8βˆ’(βˆ’7))k\mathbf{D} = (6 - 2)\mathbf{i} + (-8 - 3)\mathbf{j} + (8 - (-7))\mathbf{k} D=4iβˆ’11j+15k.\mathbf{D} = 4\mathbf{i} - 11\mathbf{j} + 15\mathbf{k}.

  3. Magnitude of D: ∣D∣=(4)2+(βˆ’11)2+(15)2|\mathbf{D}| = \sqrt{(4)^2 + (-11)^2 + (15)^2} ∣D∣=16+121+225=362β‰ˆ19.03 m.|\mathbf{D}| = \sqrt{16 + 121 + 225} = \sqrt{362} \approx 19.03 \, \text{m}.


Final Results:

  • C = 5iβˆ’jβˆ’3k5\mathbf{i} - \mathbf{j} - 3\mathbf{k}, ∣Cβˆ£β‰ˆ5.92 m|\mathbf{C}| \approx 5.92 \, \text{m}
  • D = 4iβˆ’11j+15k4\mathbf{i} - 11\mathbf{j} + 15\mathbf{k}, ∣Dβˆ£β‰ˆ19.03 m|\mathbf{D}| \approx 19.03 \, \text{m}

Would you like me to break down any specific step further?


5 Related Questions:

  1. What is the geometric interpretation of vector addition and subtraction?
  2. How do you compute the unit vector of a given vector?
  3. What is the dot product of two vectors, and how does it differ from the cross product?
  4. How do displacement vectors relate to real-world physics applications, like navigation?
  5. Can the magnitude of a vector ever be negative?

Tip:

Always double-check the signs of vector components when performing addition or subtractionβ€”they are a common source of mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Addition
Vector Subtraction
Magnitude of a Vector

Formulas

Vector addition: C = A + B
Vector subtraction: D = 2A - B
Magnitude of a vector: |V| = √(x^2 + y^2 + z^2)

Theorems

Pythagorean theorem for magnitude calculation

Suitable Grade Level

Grades 11-12 or introductory college-level physics