Math Problem Statement

Find line integral

C F · dr of vector field F(x, y, z) = 3x2zi + z2j + (x3 + 2yz)k along curve C parameterized by r(t) =

ln(t) ln(2)

i + t3/2j + t cos(𝜋t)k,

1 ≤ t ≤ 4.

Solution

To evaluate the line integral of the vector field F(x,y,z)=3x2zi+z2j+(x3+2yz)k\mathbf{F}(x, y, z) = 3x^2z \, \mathbf{i} + z^2 \, \mathbf{j} + (x^3 + 2yz) \, \mathbf{k} along the curve CC parameterized by r(t)=ln(t)i+t3/2ln(2)j+tcos(πt)k\mathbf{r}(t) = \ln(t) \, \mathbf{i} + \frac{t^{3/2}}{\ln(2)} \, \mathbf{j} + t \cos(\pi t) \, \mathbf{k} for 1t41 \leq t \leq 4, we proceed as follows:

Step 1: Compute F(r(t))\mathbf{F}(\mathbf{r}(t))

First, we substitute x=ln(t)x = \ln(t), y=t3/2ln(2)y = \frac{t^{3/2}}{\ln(2)}, and z=tcos(πt)z = t \cos(\pi t) into F(x,y,z)\mathbf{F}(x, y, z):

  1. The ii-component of F\mathbf{F} is 3x2z=3(ln(t))2tcos(πt)3x^2z = 3(\ln(t))^2 \cdot t \cos(\pi t).
  2. The jj-component of F\mathbf{F} is z2=(tcos(πt))2=t2cos2(πt)z^2 = (t \cos(\pi t))^2 = t^2 \cos^2(\pi t).
  3. The kk-component of F\mathbf{F} is x3+2yz=(ln(t))3+2t3/2ln(2)tcos(πt)x^3 + 2yz = (\ln(t))^3 + 2 \cdot \frac{t^{3/2}}{\ln(2)} \cdot t \cos(\pi t).

So, F(r(t))=3(ln(t))2tcos(πt)i+t2cos2(πt)j+((ln(t))3+2t5/2cos(πt)ln(2))k.\mathbf{F}(\mathbf{r}(t)) = 3(\ln(t))^2 \, t \cos(\pi t) \, \mathbf{i} + t^2 \cos^2(\pi t) \, \mathbf{j} + \left((\ln(t))^3 + 2 \frac{t^{5/2} \cos(\pi t)}{\ln(2)}\right) \, \mathbf{k}.

Step 2: Compute drdt\frac{d\mathbf{r}}{dt}

Differentiate each component of r(t)\mathbf{r}(t) with respect to tt:

  1. For the ii-component, ddtln(t)=1t\frac{d}{dt} \ln(t) = \frac{1}{t}.
  2. For the jj-component, ddtt3/2ln(2)=32t1/2ln(2)\frac{d}{dt} \frac{t^{3/2}}{\ln(2)} = \frac{3}{2} \frac{t^{1/2}}{\ln(2)}.
  3. For the kk-component, ddt(tcos(πt))=cos(πt)πtsin(πt)\frac{d}{dt} (t \cos(\pi t)) = \cos(\pi t) - \pi t \sin(\pi t).

Thus, drdt=1ti+32t1/2ln(2)j+(cos(πt)πtsin(πt))k.\frac{d\mathbf{r}}{dt} = \frac{1}{t} \, \mathbf{i} + \frac{3}{2} \frac{t^{1/2}}{\ln(2)} \, \mathbf{j} + \left(\cos(\pi t) - \pi t \sin(\pi t)\right) \, \mathbf{k}.

Step 3: Compute F(r(t))drdt\mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt}

The dot product F(r(t))drdt\mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} is given by: F(r(t))drdt=(3(ln(t))2tcos(πt))1t+(t2cos2(πt))32t1/2ln(2)+((ln(t))3+2t5/2cos(πt)ln(2))(cos(πt)πtsin(πt)).\mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} = \left(3(\ln(t))^2 \, t \cos(\pi t)\right) \cdot \frac{1}{t} + \left(t^2 \cos^2(\pi t)\right) \cdot \frac{3}{2} \frac{t^{1/2}}{\ln(2)} + \left((\ln(t))^3 + 2 \frac{t^{5/2} \cos(\pi t)}{\ln(2)}\right) \cdot \left(\cos(\pi t) - \pi t \sin(\pi t)\right).

Simplify each term individually:

  1. The first term: 3(ln(t))2cos(πt).3(\ln(t))^2 \cos(\pi t).
  2. The second term: 32t5/2cos2(πt)ln(2).\frac{3}{2} \frac{t^{5/2} \cos^2(\pi t)}{\ln(2)}.
  3. The third term: ((ln(t))3+2t5/2cos(πt)ln(2))(cos(πt)πtsin(πt)).\left((\ln(t))^3 + 2 \frac{t^{5/2} \cos(\pi t)}{\ln(2)}\right) \left(\cos(\pi t) - \pi t \sin(\pi t)\right).

Step 4: Integrate from t=1t = 1 to t=4t = 4

Now we need to integrate the resulting expression with respect to tt over the interval [1,4][1, 4]:

14(3(ln(t))2cos(πt)+32t5/2cos2(πt)ln(2)+((ln(t))3+2t5/2cos(πt)ln(2))(cos(πt)πtsin(πt)))dt.\int_{1}^{4} \left(3(\ln(t))^2 \cos(\pi t) + \frac{3}{2} \frac{t^{5/2} \cos^2(\pi t)}{\ln(2)} + \left((\ln(t))^3 + 2 \frac{t^{5/2} \cos(\pi t)}{\ln(2)}\right) \left(\cos(\pi t) - \pi t \sin(\pi t)\right)\right) \, dt.

This integral is quite complex and would generally be evaluated using numerical integration techniques.

Would you like a detailed breakdown of the steps involved in computing this numerically, or do you have any other questions?


  1. Would you like assistance with setting up a numerical solution for this integral?
  2. Do you want to explore properties of line integrals over vector fields?
  3. Would you like to learn about parameterizations and their effect on line integrals?
  4. Are you interested in understanding applications of line integrals in physics?
  5. Would you like help with similar problems in different coordinate systems?

Tip: When solving line integrals involving complex functions, substituting and simplifying before integrating can sometimes reveal easier ways to handle the calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integral
Parameterization of Curves
Dot Product

Formulas

Line Integral ∫C F · dr = ∫[a,b] F(r(t)) · r'(t) dt
Dot Product formula for vectors F(r(t)) · r'(t)

Theorems

Fundamental Theorem for Line Integrals
Vector Field Parameterization

Suitable Grade Level

College Level (Calculus III or Multivariable Calculus)