Math Problem Statement

Compute the x- and y-components of the vectors A⃗ A→, B⃗ B→, C⃗ C→, and D⃗ D→ in the figure

Compute the x- and y-components of the vectors A⃗, B⃗, C⃗, and D⃗ in the figure.

Solution

To compute the x- and y-components of the vectors A\vec{A}, B\vec{B}, C\vec{C}, and D\vec{D}, we can use trigonometric functions based on the magnitudes of the vectors and the angles they make with the coordinate axes.

Components of Vector A\vec{A}:

  • Magnitude of A=8.0m\vec{A} = 8.0 \, \text{m}
  • Angle with negative yy-axis = 00^\circ (since it's directly downward)

Ax=8.0m×cos(270)=8.0m×0=0mA_x = 8.0 \, \text{m} \times \cos(270^\circ) = 8.0 \, \text{m} \times 0 = 0 \, \text{m} Ay=8.0m×sin(270)=8.0m×(1)=8.0mA_y = 8.0 \, \text{m} \times \sin(270^\circ) = 8.0 \, \text{m} \times (-1) = -8.0 \, \text{m}

Components of Vector B\vec{B}:

  • Magnitude of B=15.0m\vec{B} = 15.0 \, \text{m}
  • Angle with positive xx-axis = 3030^\circ

Bx=15.0m×cos(30)=15.0m×3212.99mB_x = 15.0 \, \text{m} \times \cos(30^\circ) = 15.0 \, \text{m} \times \frac{\sqrt{3}}{2} \approx 12.99 \, \text{m} By=15.0m×sin(30)=15.0m×12=7.5mB_y = 15.0 \, \text{m} \times \sin(30^\circ) = 15.0 \, \text{m} \times \frac{1}{2} = 7.5 \, \text{m}

Components of Vector C\vec{C}:

  • Magnitude of C=12.0m\vec{C} = 12.0 \, \text{m}
  • Angle with negative xx-axis = 2525^\circ (which is equivalent to 18025=155180^\circ - 25^\circ = 155^\circ)

Cx=12.0m×cos(18025)=12.0m×(cos(25))12.0m×0.906310.88mC_x = 12.0 \, \text{m} \times \cos(180^\circ - 25^\circ) = 12.0 \, \text{m} \times (-\cos(25^\circ)) \approx -12.0 \, \text{m} \times 0.9063 \approx -10.88 \, \text{m} Cy=12.0m×sin(18025)=12.0m×sin(25)12.0m×0.42265.07mC_y = 12.0 \, \text{m} \times \sin(180^\circ - 25^\circ) = 12.0 \, \text{m} \times \sin(25^\circ) \approx 12.0 \, \text{m} \times 0.4226 \approx 5.07 \, \text{m}

Components of Vector D\vec{D}:

  • Magnitude of D=10.0m\vec{D} = 10.0 \, \text{m}
  • Angle with negative xx-axis = 5353^\circ (which is equivalent to 18053=127180^\circ - 53^\circ = 127^\circ)

Dx=10.0m×cos(127)=10.0m×(cos(53))10.0m×(0.6018)6.02mD_x = 10.0 \, \text{m} \times \cos(127^\circ) = 10.0 \, \text{m} \times (-\cos(53^\circ)) \approx 10.0 \, \text{m} \times (-0.6018) \approx -6.02 \, \text{m} Dy=10.0m×sin(127)=10.0m×sin(53)10.0m×0.79867.99mD_y = 10.0 \, \text{m} \times \sin(127^\circ) = 10.0 \, \text{m} \times \sin(53^\circ) \approx 10.0 \, \text{m} \times 0.7986 \approx 7.99 \, \text{m}

Summary of Components:

  • A\vec{A}: Ax=0mA_x = 0 \, \text{m}, Ay=8.0mA_y = -8.0 \, \text{m}
  • B\vec{B}: Bx12.99mB_x \approx 12.99 \, \text{m}, By=7.5mB_y = 7.5 \, \text{m}
  • C\vec{C}: Cx10.88mC_x \approx -10.88 \, \text{m}, Cy5.07mC_y \approx 5.07 \, \text{m}
  • D\vec{D}: Dx6.02mD_x \approx -6.02 \, \text{m}, Dy7.99mD_y \approx 7.99 \, \text{m}

Would you like a more detailed breakdown of any of the components? Here are some related questions that might interest you:

  1. How can we determine the resultant vector of all four vectors?
  2. What is the magnitude of the resultant vector of A\vec{A} and B\vec{B}?
  3. How would the components change if vector B\vec{B} were rotated by an additional 1515^\circ counterclockwise?
  4. What is the angle between vectors A\vec{A} and D\vec{D}?
  5. Can you compute the dot product of vectors C\vec{C} and D\vec{D}?

Tip: When dealing with vector components, always ensure you accurately resolve the angles with respect to the coordinate axes to avoid sign errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Decomposition
Trigonometry
Component Form of Vectors

Formulas

Ax = A * cos(θ)
Ay = A * sin(θ)
Bx = B * cos(θ)
By = B * sin(θ)
Cx = C * cos(θ)
Cy = C * sin(θ)
Dx = D * cos(θ)
Dy = D * sin(θ)

Theorems

Trigonometric functions for vector components

Suitable Grade Level

Grades 10-12