Math Problem Statement

Pada persamaan F = qv × B, jika q = 4, v = 4i + 6j + 8k dan F = 4i - 20j + 24k, hitunglah nilai B dalam notasi vektor satuan jika Bx = By.

Solution

The image contains the following problem:

In the equation F=qv×B\vec{F} = q\vec{v} \times \vec{B}, given that q=4q = 4, v=4i^+6j^+8k^\vec{v} = 4\hat{i} + 6\hat{j} + 8\hat{k}, and F=4i^20j^+24k^\vec{F} = 4\hat{i} - 20\hat{j} + 24\hat{k}, calculate the value of B\vec{B} in unit vector notation if Bx=ByB_x = B_y.

Steps to solve the problem:

  1. The equation F=qv×B\vec{F} = q\vec{v} \times \vec{B} is the vector cross product form of the Lorentz force. First, express the force equation: F=q(v×B)\vec{F} = q (\vec{v} \times \vec{B}) Substituting q=4q = 4: F=4(v×B)\vec{F} = 4 (\vec{v} \times \vec{B})

  2. Now, divide both sides of the equation by 4: F4=v×B\frac{\vec{F}}{4} = \vec{v} \times \vec{B}

  3. The vectors involved are: v=4i^+6j^+8k^,F=4i^20j^+24k^\vec{v} = 4\hat{i} + 6\hat{j} + 8\hat{k}, \quad \vec{F} = 4\hat{i} - 20\hat{j} + 24\hat{k}

    Let B=Bxi^+Bxj^+Bzk^\vec{B} = B_x\hat{i} + B_x\hat{j} + B_z\hat{k} (since Bx=ByB_x = B_y).

  4. Perform the cross product v×B\vec{v} \times \vec{B}: v×B=i^j^k^468BxBxBz\vec{v} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 6 & 8 \\ B_x & B_x & B_z \end{vmatrix}

  5. Calculate the determinant: [ \vec{v} \times \vec{B} = \hat{i}[(6)(B_z) - (8)(B_x)] - \hat{j}[(4)(B_z) - (8)(B_x)] + \hat{k}[(4)(B_x) - (6)(B_x)] ] Simplifying: v×B=i^(6Bz8Bx)j^(4Bz8Bx)+k^(4Bx6Bx)\vec{v} \times \vec{B} = \hat{i}(6B_z - 8B_x) - \hat{j}(4B_z - 8B_x) + \hat{k}(4B_x - 6B_x) v×B=i^(6Bz8Bx)j^(4Bz8Bx)+k^(2Bx)\vec{v} \times \vec{B} = \hat{i}(6B_z - 8B_x) - \hat{j}(4B_z - 8B_x) + \hat{k}(-2B_x)

  6. Now, equate v×B\vec{v} \times \vec{B} to 14F=i^+5j^+6k^\frac{1}{4}\vec{F} = \hat{i} + -5\hat{j} + 6\hat{k}: (6Bz8Bx)i^=1i^(6B_z - 8B_x)\hat{i} = 1\hat{i} (4Bz8Bx)j^=5j^-(4B_z - 8B_x)\hat{j} = -5\hat{j} 2Bxk^=6k^-2B_x\hat{k} = 6\hat{k}

  7. Solve these three equations:

    • From 2Bx=6-2B_x = 6, solve for BxB_x: Bx=3B_x = -3
    • Substituting Bx=3B_x = -3 into the first equation: 6Bz8(3)=1    6Bz+24=1    6Bz=23    Bz=2366B_z - 8(-3) = 1 \implies 6B_z + 24 = 1 \implies 6B_z = -23 \implies B_z = -\frac{23}{6}
    • Substituting Bx=3B_x = -3 into the second equation: 4Bz8(3)=5    4Bz+24=5    4Bz=19    Bz=1944B_z - 8(-3) = 5 \implies 4B_z + 24 = 5 \implies 4B_z = -19 \implies B_z = -\frac{19}{4}

Thus, the magnetic field vector B\vec{B} in unit vector notation is: B=3i^3j^194k^\vec{B} = -3\hat{i} - 3\hat{j} - \frac{19}{4}\hat{k}

Would you like to explore any specific part of this solution further or have any questions?

Here are some related questions:

  1. How does the cross product formula for vectors work geometrically?
  2. What is the physical significance of the Lorentz force equation?
  3. What are the conditions for using the right-hand rule in vector cross products?
  4. How would this problem change if BxByB_x \neq B_y?
  5. What are the units of F\vec{F}, qq, v\vec{v}, and B\vec{B} in the SI system?

Tip:

Always check the units in vector calculations to ensure consistency, especially in physics problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Cross Product
Lorentz Force
Vector Algebra

Formulas

Lorentz force equation: F = q(v × B)
Cross product of two vectors: A × B
Determinant of a 3x3 matrix

Theorems

Cross Product Properties
Right-Hand Rule

Suitable Grade Level

Undergraduate Physics or Advanced High School