Math Problem Statement

If F is a three-dimensional vector field and r = xi + yj + zk, then ∇ × (r × F) will be?

Solution

This question involves vector calculus and asks us to evaluate ×(r×F)\nabla \times (\vec{r} \times \vec{F}), where:

  • r=xi^+yj^+zk^\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}, the position vector.
  • F\vec{F} is a general three-dimensional vector field.

Formula Used:

We use the vector triple product expansion for ×(r×F)\nabla \times (\vec{r} \times \vec{F}). The formula is:

×(A×B)=(B)A(A)B+A(B)B(A)\nabla \times (\vec{A} \times \vec{B}) = (\vec{B} \cdot \nabla) \vec{A} - (\vec{A} \cdot \nabla) \vec{B} + \vec{A} (\nabla \cdot \vec{B}) - \vec{B} (\nabla \cdot \vec{A})

Here:

  • A=r\vec{A} = \vec{r},
  • B=F\vec{B} = \vec{F}.

Applying the Formula:

Breaking it into terms:

  1. First term: (F)r(\vec{F} \cdot \nabla) \vec{r}:

    • Since r=xi^+yj^+zk^\vec{r} = x \hat{i} + y \hat{j} + z \hat{k},
    • (F)r=F(\vec{F} \cdot \nabla) \vec{r} = \vec{F} (as differentiation gives back components of F\vec{F}).
  2. Second term: (r)F(\vec{r} \cdot \nabla) \vec{F}:

    • This term represents the directional derivative of F\vec{F} along r\vec{r}.
  3. Third term: r(F)\vec{r} (\nabla \cdot \vec{F}):

    • F\nabla \cdot \vec{F} is the divergence of F\vec{F}, so r(F)\vec{r} (\nabla \cdot \vec{F}) scales r\vec{r} by that value.
  4. Fourth term: F(r)- \vec{F} (\nabla \cdot \vec{r}):

    • r=3\nabla \cdot \vec{r} = 3 (since x/x+y/y+z/z=1+1+1=3\partial x/\partial x + \partial y/\partial y + \partial z/\partial z = 1 + 1 + 1 = 3).
    • So, this term becomes 3F-3 \vec{F}.

Combining the Results:

×(r×F)=(F)r(r)F3F\nabla \times (\vec{r} \times \vec{F}) = (\nabla \cdot \vec{F}) \vec{r} - (\vec{r} \cdot \nabla) \vec{F} - 3 \vec{F}

This matches option (d): (F)r(r)F3F.(\nabla \cdot \vec{F}) \vec{r} - (\vec{r} \cdot \nabla) \vec{F} - 3 \vec{F}.

Final Answer:

(d)


Let me know if you'd like a more detailed breakdown or examples! Here are five related questions to expand your understanding:

  1. What is the physical significance of the divergence of a vector field?
  2. How does the vector triple product formula generalize for various vector fields?
  3. Can you derive ×(×F)\nabla \times (\nabla \times \vec{F}) using similar principles?
  4. What is the importance of the position vector r\vec{r} in vector calculus?
  5. How can the curl of a vector field be interpreted geometrically?

Tip: Always remember the identity r=3\nabla \cdot \vec{r} = 3 in three dimensions—it’s a useful shortcut!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Triple Product Expansion
Curl and Divergence

Formulas

∇ × (A × B) = (B · ∇)A - (A · ∇)B + A(∇ · B) - B(∇ · A)
∇ · r = 3 (in three dimensions)

Theorems

Vector Triple Product Expansion

Suitable Grade Level

Undergraduate Level