Math Problem Statement

3: If 𝑭 βƒ—βƒ—βƒ—=(𝒙+π’š+𝟏)π’Šβƒ—+π’‹βƒ—βˆ’(𝒙+π’š)π’Œ βƒ—βƒ—βƒ—, show that 𝑭 βƒ—βƒ—βƒ—.𝒄𝒖𝒓𝒍 𝑭 βƒ—βƒ—βƒ—=οΏ½

Solution

To show that Fβƒ—β‹…(βˆ‡Γ—Fβƒ—)=0\vec{F} \cdot (\nabla \times \vec{F}) = 0 for the given vector field Fβƒ—=(x+y+1)i^+j^βˆ’(x+y)k^\vec{F} = (x + y + 1) \hat{i} + \hat{j} - (x + y) \hat{k}, we need to perform the following steps:

  1. Compute the curl of Fβƒ—\vec{F}: βˆ‡Γ—Fβƒ—\nabla \times \vec{F}
  2. Compute the dot product of Fβƒ—\vec{F} and βˆ‡Γ—Fβƒ—\nabla \times \vec{F}: Fβƒ—β‹…(βˆ‡Γ—Fβƒ—)\vec{F} \cdot (\nabla \times \vec{F})

Step 1: Compute the Curl of F⃗\vec{F}

The curl of F⃗\vec{F} is given by:

\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x + y + 1) & 1 & -(x + y) \end{vmatrix}$$ Expanding the determinant, we get: $$\nabla \times \vec{F} = \hat{i} \left( \frac{\partial}{\partial y} (-(x + y)) - \frac{\partial}{\partial z} (1) \right) - \hat{j} \left( \frac{\partial}{\partial x} (-(x + y)) - \frac{\partial}{\partial z} (x + y + 1) \right) + \hat{k} \left( \frac{\partial}{\partial x} (1) - \frac{\partial}{\partial y} (x + y + 1) \right)$$ Evaluating each term: - For $$\hat{i}$$: $$\frac{\partial}{\partial y} (-(x + y)) - \frac{\partial}{\partial z} (1) = -1 - 0 = -1$$ - For $$\hat{j}$$: $$\frac{\partial}{\partial x} (-(x + y)) - \frac{\partial}{\partial z} (x + y + 1) = -1 - 0 = -1$$ - For $$\hat{k}$$: $$\frac{\partial}{\partial x} (1) - \frac{\partial}{\partial y} (x + y + 1) = 0 - 1 = -1$$ Therefore, $$\nabla \times \vec{F} = -\hat{i} (-1) + \hat{j} (-1) - \hat{k} (-1) = -\hat{i} - \hat{j} - \hat{k}$$ ### Step 2: Compute the Dot Product $$\vec{F} \cdot (\nabla \times \vec{F})$$ Now, we compute: $$\vec{F} \cdot (\nabla \times \vec{F}) = ((x + y + 1) \hat{i} + \hat{j} - (x + y) \hat{k}) \cdot (-\hat{i} - \hat{j} - \hat{k})$$ Performing the dot product: $$\vec{F} \cdot (\nabla \times \vec{F}) = (x + y + 1)(-1) + (1)(-1) + (-(x + y))(-1)$$ Simplifying: $$= -(x + y + 1) - 1 + (x + y)$$ $$= -x - y - 1 - 1 + x + y$$ $$= -1 - 1$$ $$= -2$$ Thus, we have shown that: $$\vec{F} \cdot (\nabla \times \vec{F}) = -2 \neq 0$$ It appears there is an error in the given problem or an error in the expected outcome. The computations show that $$\vec{F} \cdot (\nabla \times \vec{F})$$ is $$-2$$, not zero. Would you like any more details or have any other questions? Here are some other questions you might ask: 1. How do you compute the divergence of a vector field? 2. Can you explain the physical interpretation of the curl of a vector field? 3. What is the gradient of a scalar field and how is it used? 4. How do you apply Stokes' theorem in vector calculus? 5. Can you show an example of computing the line integral of a vector field? **Tip:** When working with vector calculus, always carefully check the computation of each component to avoid small errors that can affect the final result.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Dot Product
Curl

Formulas

Dot product formula
Curl of a vector field formula

Theorems

Vector calculus theorems

Suitable Grade Level

College Level