Math Problem Statement

It is supposed to be addition and subtraction

Solution

Thank you for clarifying. Let's redo the calculations based on the operations of addition and subtraction instead of dot and cross products.

Given:

  1. a=3i^+2j^k^\vec{a} = 3\hat{i} + 2\hat{j} - \hat{k}
  2. b=i^+3j^+5k^\vec{b} = -\hat{i} + 3\hat{j} + 5\hat{k}

Task:

  1. Find a+b\vec{a} + \vec{b} (Vector Addition)
  2. Find ab\vec{a} - \vec{b} (Vector Subtraction)

Step 1: Find a+b\vec{a} + \vec{b}

To add the vectors a\vec{a} and b\vec{b}, you simply add their corresponding components:

a+b=(3i^+2j^k^)+(i^+3j^+5k^)\vec{a} + \vec{b} = (3\hat{i} + 2\hat{j} - \hat{k}) + (-\hat{i} + 3\hat{j} + 5\hat{k})

Combine the i^\hat{i}, j^\hat{j}, and k^\hat{k} components:

a+b=(31)i^+(2+3)j^+(1+5)k^\vec{a} + \vec{b} = (3 - 1)\hat{i} + (2 + 3)\hat{j} + (-1 + 5)\hat{k} a+b=2i^+5j^+4k^\vec{a} + \vec{b} = 2\hat{i} + 5\hat{j} + 4\hat{k}

Step 2: Find ab\vec{a} - \vec{b}

To subtract the vectors a\vec{a} and b\vec{b}, you subtract their corresponding components:

ab=(3i^+2j^k^)(i^+3j^+5k^)\vec{a} - \vec{b} = (3\hat{i} + 2\hat{j} - \hat{k}) - (-\hat{i} + 3\hat{j} + 5\hat{k})

Combine the i^\hat{i}, j^\hat{j}, and k^\hat{k} components:

ab=(3(1))i^+(23)j^+(15)k^\vec{a} - \vec{b} = (3 - (-1))\hat{i} + (2 - 3)\hat{j} + (-1 - 5)\hat{k} ab=4i^j^6k^\vec{a} - \vec{b} = 4\hat{i} - \hat{j} - 6\hat{k}

Final Answers:

  1. a+b=2i^+5j^+4k^\vec{a} + \vec{b} = 2\hat{i} + 5\hat{j} + 4\hat{k}
  2. ab=4i^j^6k^\vec{a} - \vec{b} = 4\hat{i} - \hat{j} - 6\hat{k}

Would you like more details on this solution, or do you have any other questions?

Related Questions:

  1. How can vector addition be visualized geometrically?
  2. What are the properties of vector addition?
  3. How do you find the magnitude of a vector after addition or subtraction?
  4. How does vector subtraction relate to the concept of displacement in physics?
  5. Can you perform vector operations in a different coordinate system, such as cylindrical or spherical coordinates?

Tip:

When adding or subtracting vectors, always make sure to handle each component (i.e., i^\hat{i}, j^\hat{j}, k^\hat{k}) separately and correctly account for signs.