Math Problem Statement
ๅฆๆโ
โ = 4๐ฬโ 6๐ฬ ๅ bโ
โ = 9๐ฬ+ 6๐ฬ๏ผๆพๅฐไธๅโ
โ + 3bโ
โ๏ผaโ ็ๆจกๆธๅๅฎไฝๅ้
โ + 3b
Solution
่ฆๆพๅฐ ๏ผ้ฆๅ ๆๅ้่ฆไฝฟ็จ็ตฆๅฎ็ๅ้ ๅ ้ฒ่ก่จ็ฎใ
้ฆๅ ๏ผๆๅ่จ็ฎ ๏ผ
ๆฅไธไพ๏ผๆๅ่จ็ฎ ๏ผ
็็ตๆๆฏ ใ
ๆฅไธไพ๏ผๆๅ่จ็ฎ ็ๆจกๆธ๏ผ
ๆๅพ๏ผ่จ็ฎ ็ๅฎไฝๅ้๏ผ
ๅฎไฝๅ้ ๆฏ ้คไปฅๅ ถๆจกๆธ๏ผ
ๅ ๆญค๏ผ ็ๅฎไฝๅ้ๆฏ ใ
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Addition
Vector Magnitude
Unit Vector
Formulas
Vector Addition: (aโ๐ฬ + aโ๐ฬ) + (bโ๐ฬ + bโ๐ฬ) = (aโ + bโ)๐ฬ + (aโ + bโ)๐ฬ
Scalar Multiplication: k(a๐ฬ + b๐ฬ) = k * a๐ฬ + k * b๐ฬ
Vector Magnitude: ||vโ|| = โ(aยฒ + bยฒ)
Unit Vector: vฬ = vโ / ||vโ||
Theorems
Properties of Vectors in Two-Dimensional Space
Suitable Grade Level
Grades 9-12
Related Recommendation
Vector Addition, Subtraction, and Unit Vector Calculations
Finding the Unit Vector in the Direction of \( \vec{a} + \vec{b} \)
Vector Addition and Subtraction: Solving for a + b, a - b, and Balancing Vectors
Unit Vector in the Direction of Vector b = 3i + 4j
Vector Addition and Magnitude: Solve \( \vec{a} = -4\hat{j} - 4\hat{i} \) and \( \vec{b} = 7\hat{i} - 2\hat{j} \)