Math Problem Statement

ๅฆ‚ๆžœโƒ—

โƒ— = 4๐‘–ฬ‚โˆ’ 6๐‘—ฬ‚ ๅ’Œ bโƒ—

โƒ— = 9๐‘–ฬ‚+ 6๐‘—ฬ‚๏ผŒๆ‰พๅˆฐไธ€ๅ€‹โƒ—

โƒ— + 3bโƒ—

โƒ—๏ผŒaโƒ— ็š„ๆจกๆ•ธๅ’Œๅ–ฎไฝๅ‘้‡

โƒ— + 3b

Solution

่ฆๆ‰พๅˆฐ aโƒ—+3bโƒ—\vec{a} + 3\vec{b}๏ผŒ้ฆ–ๅ…ˆๆˆ‘ๅ€‘้œ€่ฆไฝฟ็”จ็ตฆๅฎš็š„ๅ‘้‡ aโƒ—\vec{a} ๅ’Œ bโƒ—\vec{b} ้€ฒ่กŒ่จˆ็ฎ—ใ€‚

aโƒ—=4i^โˆ’6j^\vec{a} = 4\hat{i} - 6\hat{j} bโƒ—=9i^+6j^\vec{b} = 9\hat{i} + 6\hat{j}

้ฆ–ๅ…ˆ๏ผŒๆˆ‘ๅ€‘่จˆ็ฎ— 3bโƒ—3\vec{b}๏ผš

3bโƒ—=3(9i^+6j^)=27i^+18j^3\vec{b} = 3(9\hat{i} + 6\hat{j}) = 27\hat{i} + 18\hat{j}

ๆŽฅไธ‹ไพ†๏ผŒๆˆ‘ๅ€‘่จˆ็ฎ— aโƒ—+3bโƒ—\vec{a} + 3\vec{b}๏ผš

aโƒ—+3bโƒ—=(4i^โˆ’6j^)+(27i^+18j^)\vec{a} + 3\vec{b} = (4\hat{i} - 6\hat{j}) + (27\hat{i} + 18\hat{j}) =(4+27)i^+(โˆ’6+18)j^= (4 + 27)\hat{i} + (-6 + 18)\hat{j} =31i^+12j^= 31\hat{i} + 12\hat{j}

aโƒ—+3bโƒ—\vec{a} + 3\vec{b} ็š„็ตๆžœๆ˜ฏ 31i^+12j^31\hat{i} + 12\hat{j}ใ€‚

ๆŽฅไธ‹ไพ†๏ผŒๆˆ‘ๅ€‘่จˆ็ฎ— aโƒ—\vec{a} ็š„ๆจกๆ•ธ๏ผš

โˆฅaโƒ—โˆฅ=(4)2+(โˆ’6)2\|\vec{a}\| = \sqrt{(4)^2 + (-6)^2} =16+36= \sqrt{16 + 36} =52= \sqrt{52} =213= 2\sqrt{13}

ๆœ€ๅพŒ๏ผŒ่จˆ็ฎ— aโƒ—\vec{a} ็š„ๅ–ฎไฝๅ‘้‡๏ผš

ๅ–ฎไฝๅ‘้‡ a^\hat{a} ๆ˜ฏ aโƒ—\vec{a} ้™คไปฅๅ…ถๆจกๆ•ธ๏ผš

a^=aโƒ—โˆฅaโƒ—โˆฅ=4i^โˆ’6j^213\hat{a} = \frac{\vec{a}}{\|\vec{a}\|} = \frac{4\hat{i} - 6\hat{j}}{2\sqrt{13}} =4213i^โˆ’6213j^= \frac{4}{2\sqrt{13}}\hat{i} - \frac{6}{2\sqrt{13}}\hat{j} =213i^โˆ’313j^= \frac{2}{\sqrt{13}}\hat{i} - \frac{3}{\sqrt{13}}\hat{j}

ๅ› ๆญค๏ผŒaโƒ—\vec{a} ็š„ๅ–ฎไฝๅ‘้‡ๆ˜ฏ 213i^โˆ’313j^\frac{2}{\sqrt{13}}\hat{i} - \frac{3}{\sqrt{13}}\hat{j}ใ€‚

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Addition
Vector Magnitude
Unit Vector

Formulas

Vector Addition: (aโ‚๐‘–ฬ‚ + aโ‚‚๐‘—ฬ‚) + (bโ‚๐‘–ฬ‚ + bโ‚‚๐‘—ฬ‚) = (aโ‚ + bโ‚)๐‘–ฬ‚ + (aโ‚‚ + bโ‚‚)๐‘—ฬ‚
Scalar Multiplication: k(a๐‘–ฬ‚ + b๐‘—ฬ‚) = k * a๐‘–ฬ‚ + k * b๐‘—ฬ‚
Vector Magnitude: ||vโƒ—|| = โˆš(aยฒ + bยฒ)
Unit Vector: vฬ‚ = vโƒ— / ||vโƒ—||

Theorems

Properties of Vectors in Two-Dimensional Space

Suitable Grade Level

Grades 9-12