Math Problem Statement

jawab dengan jelas

Prove that the variance of a beta-distributed random variable with parameters α and β is \( \sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \).

Solution

To prove that the variance of a beta-distributed random variable with parameters α\alpha and β\beta is given by:

σ2=αβ(α+β)2(α+β+1)\sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}

we start by recalling the properties of a beta distribution, specifically the mean and variance formulas for a beta-distributed random variable XBeta(α,β)X \sim \text{Beta}(\alpha, \beta).

Step 1: Mean of a Beta Distribution

The mean E[X]\mathbb{E}[X] of a beta distribution with parameters α\alpha and β\beta is given by:

E[X]=αα+β\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}

Step 2: Variance of a Beta Distribution

The variance Var(X)\text{Var}(X) of a beta distribution with parameters α\alpha and β\beta is given by:

[ \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 ]

Now, we proceed by finding E[X2]\mathbb{E}[X^2] using the second moment formula.

Step 3: Second Moment E[X2]\mathbb{E}[X^2]

For a beta distribution, the second moment E[X2]\mathbb{E}[X^2] is known to be:

E[X2]=α(α+1)(α+β)(α+β+1)\mathbb{E}[X^2] = \frac{\alpha (\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}

Step 4: Substitute to Find Variance

Now we use the formula for variance:

[ \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 ]

Substitute E[X]=αα+β\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta} and E[X2]=α(α+1)(α+β)(α+β+1)\mathbb{E}[X^2] = \frac{\alpha (\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}:

Var(X)=α(α+1)(α+β)(α+β+1)(αα+β)2\text{Var}(X) = \frac{\alpha (\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} - \left( \frac{\alpha}{\alpha + \beta} \right)^2

Step 5: Simplify the Expression

Rewrite (αα+β)2\left( \frac{\alpha}{\alpha + \beta} \right)^2 as:

(αα+β)2=α2(α+β)2\left( \frac{\alpha}{\alpha + \beta} \right)^2 = \frac{\alpha^2}{(\alpha + \beta)^2}

Substitute back into the variance formula:

Var(X)=α(α+1)(α+β)(α+β+1)α2(α+β)2\text{Var}(X) = \frac{\alpha (\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} - \frac{\alpha^2}{(\alpha + \beta)^2}

To combine these terms, get a common denominator of (α+β)2(α+β+1)(\alpha + \beta)^2 (\alpha + \beta + 1):

Var(X)=α(α+1)(α+β)α2(α+β+1)(α+β)2(α+β+1)\text{Var}(X) = \frac{\alpha (\alpha + 1)(\alpha + \beta) - \alpha^2 (\alpha + \beta + 1)}{(\alpha + \beta)^2 (\alpha + \beta + 1)}

Step 6: Expand and Simplify the Numerator

Expanding the terms in the numerator:

[ = \frac{\alpha (\alpha^2 + \alpha \beta + \alpha + \beta) - \alpha^2 (\alpha + \beta + 1)}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability
Statistics
Beta Distribution
Variance

Formulas

Mean of Beta distribution: \( \mathbb{E}[X] = \frac{\alpha}{\alpha + \beta} \)
Second moment of Beta distribution: \( \mathbb{E}[X^2] = \frac{\alpha (\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} \)
Variance formula: \( \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \)

Theorems

Properties of Beta Distribution
Variance Formula for Continuous Distributions

Suitable Grade Level

College/University