Math Problem Statement

P1(a) Question: P1: (a) Each user in a computer system has a password which is 6 to 8 characters long where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

Calculate this problem using set. Also calculate it in mathematical format instead of explaining with words.

Solution

Solution to P1(a) Using Set and Mathematical Format:

Definitions:

  1. Character Set: Uppercase letters (A-Z) and digits (0-9), which totals: S=26(letters)+10(digits)=36|S| = 26 \, (\text{letters}) + 10 \, (\text{digits}) = 36

  2. Password Lengths: Password length is between 6 and 8 characters, inclusive.

Total Possible Passwords Without Restriction:

For passwords of length nn, where n{6,7,8}n \in \{6, 7, 8\}: Total passwords for length n=Sn=36n\text{Total passwords for length } n = |S|^n = 36^n Thus, the total unrestricted passwords are: Total unrestricted passwords =366+367+368\text{Total unrestricted passwords } = 36^6 + 36^7 + 36^8

Invalid Passwords (No Digits):

If a password contains no digits, then all characters must be uppercase letters. The size of this subset is: L=26(only letters in the subset)|L| = 26 \quad \text{(only letters in the subset)} For each password length nn: Invalid passwords for length n=Ln=26n\text{Invalid passwords for length } n = |L|^n = 26^n Thus, the total invalid passwords (no digits) are: Total invalid passwords =266+267+268\text{Total invalid passwords } = 26^6 + 26^7 + 26^8

Valid Passwords (At Least One Digit):

Using the complement principle, the valid passwords are: Valid passwords =Total unrestricted passwordsTotal invalid passwords\text{Valid passwords } = \text{Total unrestricted passwords} - \text{Total invalid passwords} Substituting: Valid passwords =(366+367+368)(266+267+268)\text{Valid passwords } = (36^6 + 36^7 + 36^8) - (26^6 + 26^7 + 26^8)

Final Calculation:

Expanding the powers:

  1. 366=217678233636^6 = 2176782336
  2. 367=7836416409636^7 = 78364164096
  3. 368=282110990745636^8 = 2821109907456

Total unrestricted passwords =2176782336+78364164096+2821109907456=2909823384896\text{Total unrestricted passwords } = 2176782336 + 78364164096 + 2821109907456 = 2909823384896

  1. 266=30891577626^6 = 308915776
  2. 267=803181017626^7 = 8031810176
  3. 268=20882706457626^8 = 208827064576

Total invalid passwords =308915776+8031810176+208827064576=217948085528\text{Total invalid passwords } = 308915776 + 8031810176 + 208827064576 = 217948085528

Valid passwords =2909823384896217948085528=2691875299368\text{Valid passwords } = 2909823384896 - 217948085528 = 2691875299368

Answer:

2691875299368valid passwords\boxed{2691875299368 \, \text{valid passwords}}

Would you like me to expand or verify any part of this calculation?


5 Related Questions:

  1. What is the probability of randomly generating a valid password?
  2. How does increasing the character set size (e.g., adding symbols) impact the number of valid passwords?
  3. What if the password length was 5–8 characters instead? How would that affect the result?
  4. How many passwords are valid if at least two digits are required?
  5. Can this method be adapted to include lowercase letters and symbols?

Tip: To minimize calculation errors, work incrementally by calculating powers and sums separately before combining results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Set Theory
Complement Principle
Exponential Calculations

Formulas

Total Passwords = |S|^n
Invalid Passwords = |L|^n
Valid Passwords = Total Passwords - Invalid Passwords

Theorems

Complement Principle

Suitable Grade Level

Undergraduate Level