Math Problem Statement

бери только функции

бери только функции

Solution

Here are the functions from the image:

Variant 9, 19:

  1. f(x)=2x4+3x35x+1f(x) = \frac{2}{x^4} + 3x^3 - 5x + 1 on (0;+)(0; +\infty)
  2. f(x)=2sin(4x)+3f(x) = 2\sin(4x) + 3 on (;+)(-\infty; +\infty)
  3. f(x)=26x2f(x) = 2 - 6x^2 on (;+)(-\infty; +\infty)
  4. f(x)=3cos2(3x)f(x) = \frac{3}{\cos^2(3x)}, with M(π3;1)M(\frac{\pi}{3}; 1)

Variant 5, 15:

  1. f(x)=22x3+3x4+xf(x) = 2 - 2x^3 + \frac{3}{x^4} + x on (0;+)(0; +\infty)
  2. f(x)=5sin(x)+2f(x) = 5\sin(x) + 2 on (;+)(-\infty; +\infty)
  3. f(x)=(59x)8f(x) = (5 - 9x)^8 on (;+)(-\infty; +\infty)
  4. f(x)=2cos(xπ3)f(x) = 2 \cos\left(x - \frac{\pi}{3}\right), with M(π3;2)M(\frac{\pi}{3}; 2)

Would you like to go through the solutions or any specific function in detail?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Trigonometric Functions
Polynomials

Formulas

f(x) = 2/x^4 + 3x^3 - 5x + 1
f(x) = 2sin(4x) + 3
f(x) = 2 - 6x^2
f(x) = 3/(cos^2(3x))
f(x) = 2 - 2x^3 + 3/x^4 + x
f(x) = 5sin(x) + 2
f(x) = (5 - 9x)^8
f(x) = 2cos(x - π/3)

Theorems

-

Suitable Grade Level

Grades 10-12