Math Problem Statement

f ( X ) = x +3 G ( x ) = 2x+ 7 h(x) = x square find (fog) oh = fo (goh)

Solution

To solve the composition of functions problem, we need to find:

  1. (fg)(x)(f \circ g)(x) or f(g(x))f(g(x))
  2. (gh)(x)(g \circ h)(x) or g(h(x))g(h(x))
  3. (f(gh))(x)(f \circ (g \circ h))(x) or f(g(h(x)))f(g(h(x)))

Step 1: Find (fg)(x)(f \circ g)(x)

This means we substitute g(x)g(x) into f(x)f(x).

Given:

  • f(x)=x+3f(x) = x + 3
  • g(x)=2x+7g(x) = 2x + 7

(fg)(x)=f(g(x))=f(2x+7)(f \circ g)(x) = f(g(x)) = f(2x + 7)

Now, substitute g(x)=2x+7g(x) = 2x + 7 into f(x)f(x):

f(g(x))=(2x+7)+3=2x+10f(g(x)) = (2x + 7) + 3 = 2x + 10

So, (fg)(x)=2x+10(f \circ g)(x) = 2x + 10.

Step 2: Find (gh)(x)(g \circ h)(x)

This means we substitute h(x)h(x) into g(x)g(x).

Given:

  • h(x)=x2h(x) = x^2

(gh)(x)=g(h(x))=g(x2)(g \circ h)(x) = g(h(x)) = g(x^2)

Now, substitute h(x)=x2h(x) = x^2 into g(x)g(x):

g(h(x))=2(x2)+7=2x2+7g(h(x)) = 2(x^2) + 7 = 2x^2 + 7

So, (gh)(x)=2x2+7(g \circ h)(x) = 2x^2 + 7.

Step 3: Find (f(gh))(x)(f \circ (g \circ h))(x)

This means we substitute (gh)(x)(g \circ h)(x) into f(x)f(x).

Using the result from Step 2:

(f(gh))(x)=f(g(h(x)))=f(2x2+7)(f \circ (g \circ h))(x) = f(g(h(x))) = f(2x^2 + 7)

Now, substitute 2x2+72x^2 + 7 into f(x)f(x):

f(g(h(x)))=(2x2+7)+3=2x2+10f(g(h(x))) = (2x^2 + 7) + 3 = 2x^2 + 10

So, (f(gh))(x)=2x2+10(f \circ (g \circ h))(x) = 2x^2 + 10.

Final Answers:

  1. (fg)(x)=2x+10(f \circ g)(x) = 2x + 10
  2. (gh)(x)=2x2+7(g \circ h)(x) = 2x^2 + 7
  3. (f(gh))(x)=2x2+10(f \circ (g \circ h))(x) = 2x^2 + 10

Would you like more details or have any questions?

Here are 5 related questions:

  1. What is the domain of the composite function (fg)(x)(f \circ g)(x)?
  2. How would the composition change if h(x)=x3h(x) = x^3 instead of x2x^2?
  3. Can you find the inverse of the function f(x)=x+3f(x) = x + 3?
  4. What happens if you compose the functions in a different order, such as (gf)(x)(g \circ f)(x)?
  5. How do you determine if a function is one-to-one or onto?

Tip: When dealing with function compositions, always perform the substitution step carefully to avoid errors in simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Polynomials

Formulas

-

Theorems

-

Suitable Grade Level

Advanced High School