Math Problem Statement

MATH SELFIE

A. Perform the following fundamental operations on each given functions.Assignment: Answer 1, 3, 5, 7, 9. Refer to c.

c. (f•g)(x)

  1. f(x) = x + 1 g(x) = 2x - 3

  2. f(x) = x ^ 2 + 1 g(x) = x - 3

  3. f(x) = x - 2 g(x) = 1/x

  4. f(x) = 3x ^ 2 + 1; g(x) = x - 3

  5. f(x) = 2/x g(x) = 1/x

Solution

To perform the operation (fg)(x)(f \cdot g)(x), which represents the composition of two functions, we evaluate g(x)g(x) first and then substitute that result into f(x)f(x). This is different from the product of the functions f(x)×g(x)f(x) \times g(x). Here’s how you can calculate (fg)(x)(f \cdot g)(x) for each of the given pairs of functions:

1. f(x)=x+1f(x) = x + 1, g(x)=2x3g(x) = 2x - 3

(fg)(x)=f(g(x))=f(2x3)(f \cdot g)(x) = f(g(x)) = f(2x - 3) Substitute 2x32x - 3 into f(x)f(x): f(2x3)=(2x3)+1=2x2f(2x - 3) = (2x - 3) + 1 = 2x - 2 So, (fg)(x)=2x2(f \cdot g)(x) = 2x - 2.

3. f(x)=x2+1f(x) = x^2 + 1, g(x)=x3g(x) = x - 3

(fg)(x)=f(g(x))=f(x3)(f \cdot g)(x) = f(g(x)) = f(x - 3) Substitute x3x - 3 into f(x)f(x): f(x3)=(x3)2+1f(x - 3) = (x - 3)^2 + 1 Expand (x3)2(x - 3)^2: (x3)2=x26x+9(x - 3)^2 = x^2 - 6x + 9 So, f(x3)=x26x+9+1=x26x+10f(x - 3) = x^2 - 6x + 9 + 1 = x^2 - 6x + 10 Thus, (fg)(x)=x26x+10(f \cdot g)(x) = x^2 - 6x + 10.

5. f(x)=x2f(x) = x - 2, g(x)=1xg(x) = \frac{1}{x}

(fg)(x)=f(1x)(f \cdot g)(x) = f\left(\frac{1}{x}\right) Substitute 1x\frac{1}{x} into f(x)f(x): f(1x)=1x2f\left(\frac{1}{x}\right) = \frac{1}{x} - 2 So, (fg)(x)=1x2(f \cdot g)(x) = \frac{1}{x} - 2.

7. f(x)=3x2+1f(x) = 3x^2 + 1, g(x)=x3g(x) = x - 3

(fg)(x)=f(g(x))=f(x3)(f \cdot g)(x) = f(g(x)) = f(x - 3) Substitute x3x - 3 into f(x)f(x): f(x3)=3(x3)2+1f(x - 3) = 3(x - 3)^2 + 1 Expand (x3)2(x - 3)^2: (x3)2=x26x+9(x - 3)^2 = x^2 - 6x + 9 So, f(x3)=3(x26x+9)+1=3x218x+27+1=3x218x+28f(x - 3) = 3(x^2 - 6x + 9) + 1 = 3x^2 - 18x + 27 + 1 = 3x^2 - 18x + 28 Thus, (fg)(x)=3x218x+28(f \cdot g)(x) = 3x^2 - 18x + 28.

9. f(x)=2xf(x) = \frac{2}{x}, g(x)=1xg(x) = \frac{1}{x}

(fg)(x)=f(1x)(f \cdot g)(x) = f\left(\frac{1}{x}\right) Substitute 1x\frac{1}{x} into f(x)f(x): f(1x)=21x=2xf\left(\frac{1}{x}\right) = \frac{2}{\frac{1}{x}} = 2x So, (fg)(x)=2x(f \cdot g)(x) = 2x.

Summary of Answers:

  1. (fg)(x)=2x2(f \cdot g)(x) = 2x - 2
  2. (fg)(x)=x26x+10(f \cdot g)(x) = x^2 - 6x + 10
  3. (fg)(x)=1x2(f \cdot g)(x) = \frac{1}{x} - 2
  4. (fg)(x)=3x218x+28(f \cdot g)(x) = 3x^2 - 18x + 28
  5. (fg)(x)=2x(f \cdot g)(x) = 2x

Would you like further details or have any questions?

Further Questions:

  1. How do you differentiate between function composition and multiplication?
  2. What is the difference between (fg)(x)(f \cdot g)(x) and (gf)(x)(g \cdot f)(x)?
  3. How do you expand a binomial like (x3)2(x - 3)^2?
  4. What happens if g(x)g(x) is a constant function?
  5. Can function composition be applied to trigonometric functions?
  6. What is the significance of the order in function composition?
  7. How do you interpret the result of (fg)(x)(f \cdot g)(x) graphically?
  8. How can you verify if a function is invertible before composition?

Tip: When composing functions, always ensure that the output of the inner function (g(x)) falls within the domain of the outer function (f(x)).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Operations with Functions

Formulas

-

Theorems

-

Suitable Grade Level

Grades 10-12