Math Problem Statement
All g ¨A emeine Definition: Eine bin¨are Relation R ✓ A heißt q uivalenzrelation ( auf A ) , falls:
R reflexiv und symmetrisch und transitiv.
.
. F ¨u r R ✓ A ⇥ A eine
¨A
uivalenzrelation definiert man:
q
. ¨Aquivalenzklasse eines Objekts a bzgl. R:
¨u
⇥ A
ber einer Men g e A
[a] R = { b 2 A | aRb }
Bsp.: [1] = Z = { 1 } , [*5] ⌘ 3 = 3Z + 1
. Fakt: Es gilt a 2 [a] R und [a] R = [b] R f¨ur aRb und [a] R \ [b] R = ; f¨ur (a, b) 2 6 R
Quotient von A bzgl. R als die Menge aller ¨Aquivalenzklassen:
.
A/R = { [a] R | a 2 A }
Bsp.: Z/= Z = {{ x } | x 2 Z } , Z/⌘ 3 = { 3Z, 3Z + 1, 3Z + 2 }
. Fakt: A/R ist eine Partition von A
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Set Theory
Relations
Equivalence Relations
Formulas
[a]_R = { b ∈ A | a R b }
A/R = { [a]_R | a ∈ A }
Theorems
Properties of equivalence relations (reflexivity, symmetry, transitivity)
Partitioning of sets
Suitable Grade Level
Grades 11-12
Related Recommendation
Understanding Equivalence Relations and Equivalence Classes in Set Theory
Understanding Equivalence Relations: Reflexivity, Symmetry, and Transitivity
Analysis of Relations and Equivalence in Set Theory
Understanding Equivalence Relations and Equivalence Classes in Set Theory
Equivalence Relation and Equivalence Class: a∈[a]