Math Problem Statement
\begin{aligned} f(x)&=|x| \\ g(x)&=|x - 4| - 4 \end{aligned}
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Absolute Value Functions
Transformations of Functions
Piecewise Functions
Formulas
|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}
|x - a| = \begin{cases} x - a & \text{if } x \geq a \\ a - x & \text{if } x < a \end{cases}
Theorems
-
Suitable Grade Level
Grades 10-12
Related Recommendation
Transforming Absolute Value Function: y = |x| to g(x) with Horizontal Shift and Flip
Graphing Absolute Value Functions with Transformations: f(x) = |x|, g(x) = |4x|, h(x) = -4|x + 4| - 5
Absolute Value Function Transformation g(x) = 2|x + 2|
Analyze Absolute Value Functions f(x) = |x - 2| + 2 and g(x) = |x + 9|
Graphing Absolute Value Functions f(x) = |x - 3| and g(x) = |x + 4|