Math Problem Statement

Construct a truth table for the statement (¬q ∧ ¬p) ∧ (¬p ∨ q).

Solution

Let's break down the statement (¬q¬p)(¬pq)(\neg q \land \neg p) \land (\neg p \lor q) and fill in the truth table step by step.

Variables:

  • pp
  • qq

Negations:

  • ¬p\neg p: Negation of pp
  • ¬q\neg q: Negation of qq

Intermediate operations:

  • ¬q¬p\neg q \land \neg p: Logical AND between ¬q\neg q and ¬p\neg p
  • ¬pq\neg p \lor q: Logical OR between ¬p\neg p and qq

Final expression:

  • (¬q¬p)(¬pq)(\neg q \land \neg p) \land (\neg p \lor q): Logical AND between the two intermediate results.

Step-by-step truth table completion:

ppqq¬p\neg p¬q\neg q¬q¬p\neg q \land \neg p¬pq\neg p \lor q(¬q¬p)(¬pq)(\neg q \land \neg p) \land (\neg p \lor q)
TTFFFFF
TFFTFFF
FTTFFTF
FFTTTTT

Explanation:

  • Row 1:

    • p=Tp = T, q=Tq = T, so ¬p=F\neg p = F, ¬q=F\neg q = F.
    • ¬q¬p=FF=F\neg q \land \neg p = F \land F = F
    • ¬pq=FT=F\neg p \lor q = F \lor T = F
    • FF=FF \land F = F
  • Row 2:

    • p=Tp = T, q=Fq = F, so ¬p=F\neg p = F, ¬q=T\neg q = T.
    • ¬q¬p=TF=F\neg q \land \neg p = T \land F = F
    • ¬pq=FF=F\neg p \lor q = F \lor F = F
    • FF=FF \land F = F
  • Row 3:

    • p=Fp = F, q=Tq = T, so ¬p=T\neg p = T, ¬q=F\neg q = F.
    • ¬q¬p=FT=F\neg q \land \neg p = F \land T = F
    • ¬pq=TT=T\neg p \lor q = T \lor T = T
    • FT=FF \land T = F
  • Row 4:

    • p=Fp = F, q=Fq = F, so ¬p=T\neg p = T, ¬q=T\neg q = T.
    • ¬q¬p=TT=T\neg q \land \neg p = T \land T = T
    • ¬pq=TF=T\neg p \lor q = T \lor F = T
    • TT=TT \land T = T

Would you like any further details on this process, or do you have any questions?


Here are 5 related questions to expand on this:

  1. What is the purpose of constructing truth tables in logic?
  2. How does the AND (\land) operation differ from the OR (\lor) operation?
  3. Can you simplify the expression (¬q¬p)(¬pq)(\neg q \land \neg p) \land (\neg p \lor q)?
  4. What is the significance of the final column in a truth table?
  5. How can truth tables be used to check for logical equivalence between expressions?

Tip: When constructing truth tables, always start by evaluating the negations and then work step-by-step through logical operators (AND, OR) to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Logical Operators
Truth Tables

Formulas

AND (∧)
OR (∨)
Negation (¬)

Theorems

Truth Table Construction

Suitable Grade Level

Grades 10-12