Math Problem Statement

Find the integral if E is the closed box 0 ≤ x ≤ 3, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1. ∭_E (x² + y² + z²) dV

Solution

To solve the given integral over the region EE, which is a box defined by 0x30 \leq x \leq 3, 0y10 \leq y \leq 1, and 0z10 \leq z \leq 1, the integral can be expressed as:

E(x2+y2+z2)dV=030101(x2+y2+z2)dzdydx\iiint_E (x^2 + y^2 + z^2) \, dV = \int_0^3 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \, dz \, dy \, dx

Step 1: Break the integral into components

The integrand can be split as: E(x2+y2+z2)dV=Ex2dV+Ey2dV+Ez2dV\iiint_E (x^2 + y^2 + z^2) \, dV = \iiint_E x^2 \, dV + \iiint_E y^2 \, dV + \iiint_E z^2 \, dV

Step 2: Evaluate each term

Term 1: Ex2dV\iiint_E x^2 \, dV

Since x2x^2 depends only on xx: Ex2dV=03x2(0101dzdy)dx\iiint_E x^2 \, dV = \int_0^3 x^2 \left( \int_0^1 \int_0^1 \, dz \, dy \right) dx Evaluate the inner integrals over zz and yy: 0101dzdy=01[z]01dy=011dy=1\int_0^1 \int_0^1 \, dz \, dy = \int_0^1 [z]_0^1 \, dy = \int_0^1 1 \, dy = 1 Thus: Ex2dV=03x21dx=03x2dx=[x33]03=273=9\iiint_E x^2 \, dV = \int_0^3 x^2 \cdot 1 \, dx = \int_0^3 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^3 = \frac{27}{3} = 9

Term 2: Ey2dV\iiint_E y^2 \, dV

Since y2y^2 depends only on yy: Ey2dV=01y2(0301dzdx)dy\iiint_E y^2 \, dV = \int_0^1 y^2 \left( \int_0^3 \int_0^1 \, dz \, dx \right) dy Evaluate the inner integrals over zz and xx: 0301dzdx=03[z]01dx=031dx=3\int_0^3 \int_0^1 \, dz \, dx = \int_0^3 [z]_0^1 \, dx = \int_0^3 1 \, dx = 3 Thus: Ey2dV=01y23dy=301y2dy=3[y33]01=313=1\iiint_E y^2 \, dV = \int_0^1 y^2 \cdot 3 \, dy = 3 \int_0^1 y^2 \, dy = 3 \left[ \frac{y^3}{3} \right]_0^1 = 3 \cdot \frac{1}{3} = 1

Term 3: Ez2dV\iiint_E z^2 \, dV

Since z2z^2 depends only on zz: Ez2dV=01z2(0301dydx)dz\iiint_E z^2 \, dV = \int_0^1 z^2 \left( \int_0^3 \int_0^1 \, dy \, dx \right) dz Evaluate the inner integrals over yy and xx: 0301dydx=03[y]01dx=031dx=3\int_0^3 \int_0^1 \, dy \, dx = \int_0^3 [y]_0^1 \, dx = \int_0^3 1 \, dx = 3 Thus: Ez2dV=01z23dz=301z2dz=3[z33]01=313=1\iiint_E z^2 \, dV = \int_0^1 z^2 \cdot 3 \, dz = 3 \int_0^1 z^2 \, dz = 3 \left[ \frac{z^3}{3} \right]_0^1 = 3 \cdot \frac{1}{3} = 1

Step 3: Combine the results

E(x2+y2+z2)dV=Ex2dV+Ey2dV+Ez2dV=9+1+1=11\iiint_E (x^2 + y^2 + z^2) \, dV = \iiint_E x^2 \, dV + \iiint_E y^2 \, dV + \iiint_E z^2 \, dV = 9 + 1 + 1 = 11

Final Answer:

E(x2+y2+z2)dV=11\iiint_E (x^2 + y^2 + z^2) \, dV = 11

Let me know if you need any clarifications or further details! Here are some follow-up questions:

  1. What if the boundaries of x,y,zx, y, z were different?
  2. How would this change if the integrand was x2y2z2x^2y^2z^2?
  3. Can this integral be solved using symmetry arguments?
  4. How does the choice of integration order affect the computation?
  5. How would this extend to higher-dimensional integrals?

Tip: When evaluating triple integrals, always check if the integrand can be split into independent functions of x,y,zx, y, z. This simplifies the computation significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Triple Integrals
Volume Integration

Formulas

∭_E f(x, y, z) dV = ∫∫∫ f(x, y, z) dx dy dz

Theorems

Fubini's Theorem for Triple Integrals

Suitable Grade Level

University (Calculus 3 or Multivariable Calculus)