Math Problem Statement

CALCULATE WITH DETilas'

Calculate the triple integral \( \iiint_\Omega \frac{1}{\sqrt{x^2 + y^2 + z^2}} \, dx \, dy \, dz \), where \( \Omega \) is defined as \( 4 \leq x^2 + y^2 + z^2 \leq 16 \).

Solution

The given problem is a triple integral over the region Ω\Omega, where Ω\Omega is defined by 4x2+y2+z2164 \leq x^2 + y^2 + z^2 \leq 16, and the integral to evaluate is:

Ω1x2+y2+z2dxdydz.\iiint_\Omega \frac{1}{\sqrt{x^2 + y^2 + z^2}} \, dx \, dy \, dz.

Approach to Solve

The region Ω\Omega is a spherical shell bounded by two spheres with radii 22 and 44 (since 4=224 = 2^2 and 16=4216 = 4^2). We switch to spherical coordinates, where:

  • x=ρsinϕcosθx = \rho \sin\phi \cos\theta,
  • y=ρsinϕsinθy = \rho \sin\phi \sin\theta,
  • z=ρcosϕz = \rho \cos\phi,
  • The volume element dxdydz=ρ2sinϕdρdϕdθdx \, dy \, dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

The given function 1x2+y2+z2\frac{1}{\sqrt{x^2 + y^2 + z^2}} becomes 1ρ\frac{1}{\rho} in spherical coordinates. The integral now becomes:

Ω1x2+y2+z2dxdydz=02π0π241ρρ2sinϕdρdϕdθ.\iiint_\Omega \frac{1}{\sqrt{x^2 + y^2 + z^2}} \, dx \, dy \, dz = \int_0^{2\pi} \int_0^\pi \int_2^4 \frac{1}{\rho} \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

Simplify the integrand: 1ρρ2=ρ.\frac{1}{\rho} \rho^2 = \rho.

Thus, the integral becomes: 02π0π24ρsinϕdρdϕdθ.\int_0^{2\pi} \int_0^\pi \int_2^4 \rho \sin\phi \, d\rho \, d\phi \, d\theta.

Step 1: Evaluate the ρ\rho-Integral

24ρdρ=[ρ22]24=422222=16242=82=6.\int_2^4 \rho \, d\rho = \left[ \frac{\rho^2}{2} \right]_2^4 = \frac{4^2}{2} - \frac{2^2}{2} = \frac{16}{2} - \frac{4}{2} = 8 - 2 = 6.

Step 2: Evaluate the ϕ\phi-Integral

0πsinϕdϕ=[cosϕ]0π=cosπ+cos0=(1)+1=2.\int_0^\pi \sin\phi \, d\phi = \left[ -\cos\phi \right]_0^\pi = -\cos\pi + \cos0 = -(-1) + 1 = 2.

Step 3: Evaluate the θ\theta-Integral

02π1dθ=[θ]02π=2π.\int_0^{2\pi} 1 \, d\theta = \left[ \theta \right]_0^{2\pi} = 2\pi.

Combine the Results

Multiply the results from each step: 622π=24π.6 \cdot 2 \cdot 2\pi = 24\pi.

Final Answer:

24π\boxed{24\pi}

Let me know if you need further clarifications or have questions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integral
Spherical Coordinates
Multivariable Calculus

Formulas

Spherical Coordinates: \( x = \rho \sin\phi \cos\theta, y = \rho \sin\phi \sin\theta, z = \rho \cos\phi \)
Volume Element: \( dx \, dy \, dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \)

Theorems

Integration in Spherical Coordinates

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus