Math Problem Statement

c) Use spherical coordinates to evaluate Z 3 −3 Z √ 9−x2 − √ 9−x2 Z √ 9−x2−y2 0 z p x 2 + y 2 + z 2dz dy dx

Solution

To evaluate the given integral using spherical coordinates, follow these steps:

The integral is:

339x29x29x2y20zx2+y2+z2dzdydx.\int_{-3}^3 \int_{\sqrt{9-x^2}}^{-\sqrt{9-x^2}} \int_{\sqrt{9-x^2-y^2}}^{0} z \sqrt{x^2 + y^2 + z^2} \, dz \, dy \, dx.

Step 1: Express the coordinates in spherical terms

In spherical coordinates:

  • x=ρsinϕcosθx = \rho \sin\phi \cos\theta
  • y=ρsinϕsinθy = \rho \sin\phi \sin\theta
  • z=ρcosϕz = \rho \cos\phi
  • x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2
  • dxdydz=ρ2sinϕdρdϕdθdx \, dy \, dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

The limits for spherical coordinates are:

  • ρ:[0,R]\rho: [0, R] (from the origin to the boundary of the sphere)
  • ϕ:[0,π]\phi: [0, \pi] (from the positive zz-axis to the negative zz-axis)
  • θ:[0,2π]\theta: [0, 2\pi] (full rotation around the zz-axis)

Here, the given sphere has radius 33, so R=3R = 3.

Step 2: Rewrite the integral in spherical coordinates

Substitute the given bounds and integrand into spherical coordinates:

  • The integrand zx2+y2+z2z \sqrt{x^2 + y^2 + z^2} becomes: zx2+y2+z2=(ρcosϕ)(ρ)=ρ2cosϕ.z \sqrt{x^2 + y^2 + z^2} = (\rho \cos\phi) (\rho) = \rho^2 \cos\phi.
  • The differential dxdydzdx \, dy \, dz becomes ρ2sinϕdρdϕdθ\rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

Thus, the integral becomes: 02π0π03ρ2cosϕρ2sinϕdρdϕdθ.\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{3} \rho^2 \cos\phi \cdot \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

Step 3: Separate the integral into independent parts

Separate the variables: 02πdθ0πcosϕsinϕdϕ03ρ4dρ.\int_{0}^{2\pi} d\theta \cdot \int_{0}^{\pi} \cos\phi \sin\phi \, d\phi \cdot \int_{0}^{3} \rho^4 \, d\rho.

Evaluate 02πdθ\int_{0}^{2\pi} d\theta:

02πdθ=2π.\int_{0}^{2\pi} d\theta = 2\pi.

Evaluate 0πcosϕsinϕdϕ\int_{0}^{\pi} \cos\phi \sin\phi \, d\phi:

Use the substitution u=sinϕu = \sin\phi, du=cosϕdϕdu = \cos\phi \, d\phi: 0πcosϕsinϕdϕ=01udu=[u22]01=12.\int_{0}^{\pi} \cos\phi \sin\phi \, d\phi = \int_{0}^{1} u \, du = \left[\frac{u^2}{2}\right]_{0}^{1} = \frac{1}{2}.

Evaluate 03ρ4dρ\int_{0}^{3} \rho^4 \, d\rho:

03ρ4dρ=[ρ55]03=355055=2435.\int_{0}^{3} \rho^4 \, d\rho = \left[\frac{\rho^5}{5}\right]_{0}^{3} = \frac{3^5}{5} - \frac{0^5}{5} = \frac{243}{5}.

Step 4: Combine the results

Multiply the results together: 2π122435=2π22435=243π5.2\pi \cdot \frac{1}{2} \cdot \frac{243}{5} = \frac{2\pi}{2} \cdot \frac{243}{5} = \frac{243\pi}{5}.

Final Answer:

243π5\boxed{\frac{243\pi}{5}}

Would you like a detailed explanation of any step?


Related Questions:

  1. How do we set limits in spherical coordinates for a general sphere?
  2. What substitutions are helpful in evaluating trigonometric integrals in spherical coordinates?
  3. How does the Jacobian arise in changing coordinates to spherical?
  4. Can this integral be evaluated directly in Cartesian coordinates?
  5. What physical scenarios use integrals in spherical coordinates?

Tip:

When converting to spherical coordinates, always remember to multiply by the Jacobian (ρ2sinϕ\rho^2 \sin\phi)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Spherical Coordinates
Triple Integrals

Formulas

Spherical coordinates: \(x = \rho \sin\phi \cos\theta, y = \rho \sin\phi \sin\theta, z = \rho \cos\phi\)
Volume element in spherical coordinates: \(dx \, dy \, dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta\)

Theorems

Jacobian determinant for spherical coordinates
Trigonometric integration techniques

Suitable Grade Level

College (Calculus III or Multivariable Calculus)