Math Problem Statement

Evaluate the integral Integral from 0 to StartFraction pi Over 6 EndFraction Integral from 0 to ln left parenthesis secant v right parenthesis Integral from negative infinity to 2 t e Superscript x Baseline dx dt dv .

Solution

Let's walk through the evaluation of the integral step by step:

0π/60ln(secv)2texdxdtdv\int_0^{\pi/6} \int_0^{\ln(\sec v)} \int_{-\infty}^{2t} e^x \, dx \, dt \, dv

Step 1: Evaluate the innermost integral with respect to xx

We need to integrate exe^x from -\infty to 2t2t.

2texdx\int_{-\infty}^{2t} e^x \, dx

The integral of exe^x is exe^x. Now apply the limits:

[ex]2t=e2tlimxex=e2t0=e2t\left[ e^x \right]_{-\infty}^{2t} = e^{2t} - \lim_{x \to -\infty} e^x = e^{2t} - 0 = e^{2t}

So, the innermost integral becomes:

2texdx=e2t\int_{-\infty}^{2t} e^x \, dx = e^{2t}

Step 2: Evaluate the second integral with respect to tt

Now we substitute the result from the innermost integral into the next one. We now integrate e2te^{2t} with respect to tt from 00 to ln(secv)\ln(\sec v).

0ln(secv)e2tdt\int_0^{\ln(\sec v)} e^{2t} \, dt

The antiderivative of e2te^{2t} is:

e2t2\frac{e^{2t}}{2}

Applying the limits:

[e2t2]0ln(secv)=e2ln(secv)2e02\left[ \frac{e^{2t}}{2} \right]_0^{\ln(\sec v)} = \frac{e^{2 \ln(\sec v)}}{2} - \frac{e^0}{2}

Using the logarithm property e2ln(secv)=(secv)2e^{2 \ln(\sec v)} = (\sec v)^2:

=(secv)2212= \frac{(\sec v)^2}{2} - \frac{1}{2}

So, the second integral evaluates to:

(secv)212\frac{(\sec v)^2 - 1}{2}

Step 3: Simplify the expression

Using the trigonometric identity sec2v1=tan2v\sec^2 v - 1 = \tan^2 v, we simplify the expression:

(secv)212=tan2v2\frac{(\sec v)^2 - 1}{2} = \frac{\tan^2 v}{2}

Step 4: Evaluate the outermost integral with respect to vv

Now we integrate tan2v2\frac{\tan^2 v}{2} with respect to vv from 00 to π/6\pi/6.

0π/6tan2v2dv=120π/6tan2vdv\int_0^{\pi/6} \frac{\tan^2 v}{2} \, dv = \frac{1}{2} \int_0^{\pi/6} \tan^2 v \, dv

We know that:

tan2vdv=tanvv\int \tan^2 v \, dv = \tan v - v

Applying the limits:

[tanvv]0π/6=(tan(π6)π6)(00)\left[ \tan v - v \right]_0^{\pi/6} = \left( \tan\left(\frac{\pi}{6}\right) - \frac{\pi}{6} \right) - (0 - 0)

Since tan(π/6)=13\tan(\pi/6) = \frac{1}{\sqrt{3}}, the result becomes:

13π6\frac{1}{\sqrt{3}} - \frac{\pi}{6}

Step 5: Final result

Now multiply by the constant 12\frac{1}{2}:

12(13π6)=123π12\frac{1}{2} \left( \frac{1}{\sqrt{3}} - \frac{\pi}{6} \right) = \frac{1}{2\sqrt{3}} - \frac{\pi}{12}

Thus, the value of the integral is:

123π12\boxed{\frac{1}{2\sqrt{3}} - \frac{\pi}{12}}


Do you have any questions or want further clarification?
Here are five related questions you could explore next:

  1. How do we compute improper integrals involving infinity?
  2. What are other identities involving secv\sec v and tanv\tan v?
  3. How do logarithmic functions behave inside integrals?
  4. What are the properties of definite integrals over trigonometric functions?
  5. How does integration by parts work for nested integrals?

Tip: When integrating exponential functions over infinite limits, remember that their convergence depends on the sign of the exponent!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Exponential Functions
Trigonometric Functions

Formulas

∫ e^x dx = e^x
e^{2 ln(sec v)} = (sec v)^2
sec^2 v - 1 = tan^2 v
∫ tan^2 v dv = tan v - v

Theorems

Fundamental Theorem of Calculus
Logarithmic and Trigonometric Identities

Suitable Grade Level

College Level or Advanced Calculus